Skip to main content
Log in

Surface modification using interfacial assembly of the Streptomyces chaplin proteins

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The chaplin proteins are instrumental in the formation of reproductive aerial structures by the filamentous bacterium Streptomyces coelicolor. They lower the water surface tension thereby enabling aerial growth. In addition, chaplins provide surface hydrophobicity to the aerial hyphae by assembling on the cell surface into an amphipathic layer of amyloid fibrils. We here show that mixtures of cell wall-extracted chaplins can be used to modify a variety of hydrophilic and hydrophobic surfaces in vitro thereby changing their nature. Assembly on glass leads to a protein coating that makes the surface hydrophobic. Conversely, the assembly of chaplins on hydrophobic surfaces renders them hydrophilic. Furthermore, we show that chaplins can stabilize emulsions of oil into water and have an unprecedented surface activity at high pH. Interestingly, this high surface activity coincides with the interfacial assembly of chaplins into a semi-liquid membrane, as opposed to the rigid membrane formed at neutral pH. This semi-liquid membrane possibly represents a trapped intermediate in the assembly process towards the more rigid amyloidal conformation. Taken together, our data shows that chaplins are suitable candidate proteins for a wide range of biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bilewicz R, Witomski J, Van der Heyden A, Tagu D, Palin B, Rogalska E (2004) Modification of electrodes with self-assembled hydrophobin layers. J Phys Chem B 105(40):9772–9777

    Article  Google Scholar 

  • Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis, and function of microbial amyloids. Trends Microbiol 20(2):66–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bokhove M, Claessen D, de Jong W, Dijkhuizen L, Boekema EJ, Oostergetel GT (2013) Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol. doi:10.1016/j.jsb.2013.08.013, in press

    PubMed  Google Scholar 

  • Capstick DS, Jomaa A, Hanke C, Ortega J, Elliot MA (2011) Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis. Proc Natl Acad Sci U S A 108(24):9821–9826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chater KF, Horinouchi S (2003) Signaling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Wösten HAB, van Keulen G, Faber OG, Alves AM, Meijer WG, Dijkhuizen L (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44(6):1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wösten HAB (2003) A novel class of secreted hydrophobic proteins in involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17(14):1714–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA, Dijkhuizen L, Wösten HAB (2004) The formation of the rodlet layer of Streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, de Jong W, Dijkhuizen L, Wösten HAB (2006) Regulation of Streptomyces development: reach for the sky! Trends Microbiol 14(7):313–319

    Article  CAS  PubMed  Google Scholar 

  • de Jong W, Wösten HAB, Dijkhuizen L, Claessen D (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73(6):1128–1140

    Article  PubMed  Google Scholar 

  • de Jong W, Vijgenboom E, Dijkhuizen L, Wösten HAB, Claessen D (2012) SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiol Lett 329(2):154–159

    Article  PubMed  Google Scholar 

  • Duong A, Capstick DS, Di Berardo C, Findlay KC, Hesketh A, Hong HJ, Elliot MA (2012) Aerial development in Streptomyces coelicolor requires sortase activity. Mol Microbiol 83(5):992–1005

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elliot MA, Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7(6):594–601

    Article  CAS  PubMed  Google Scholar 

  • Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17(14):1727–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falabella P, Riviello L, Pascale M, Lelio ID, Tettamanti G, Grimaldi A, Iannone C, Monti M, Pucci P, Tamburro AM, Deeguileor M, Gigliotti S, Pennacchio F (2012) Functional amyloids in insect immune response. Insect Biochem Mol Biol 42(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49

    Article  PubMed  Google Scholar 

  • Fodera V, Groenning M, Vetri V, Librizzi F, Spagnolo S, Cornett C, Olsen L, van der Weert M, Leone M (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem 112:15174–15181

    Article  CAS  Google Scholar 

  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLOS Biol 4(1):e6

    Article  PubMed Central  PubMed  Google Scholar 

  • Gras SL, Claessen D (2013) Functional amyloid fibrils: lessons from microbes. In: Havlicek V, Spizek J (eds) Natural Products Analysis: instrumentation, Methods, and Applications. Wiley (in press)

  • Gebbink MFBH, Claessen D, Bouma B, Dijkhuizen L, Wösten HAB (2005) Amyloids—a functional coat for microorganisms. Nat Rev Microbiol 3(4):333–341

    Article  CAS  PubMed  Google Scholar 

  • Hozzein WN, Ali MIA, Hammouda O, Mousa AS, Goodfellow M (2011) Streptomyces sannurensis sp. nov., a new alkaliphilic member of the genus Streptomyces isolated from Wadi Sannur in Egypt. Afr J Microbiol Res 5(11):1329–1334

    Google Scholar 

  • Janssen MI, van Leeuwen MB, van Kooten TG, de Vries J, Dijkhuizen L, Wösten HAB (2004) Promotion of fibroblast activity by coating with hydrophobins in the β-sheet end state. Biomaterials 25(14):2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Zhang YG, Zhang YQ, Tang SK, Xu P, Xu LH, Jiang CL (2005) Streptomyces sodiiphilus sp. Nov., a novel alkaliphilic actinomycete. Int J Syst Evol Microbiol 55(3):1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Linder M, Szilvay GR, Nakari-Setala T, Soderlund H, Penttila M (2002) Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci 11(9):2257–2266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896

    Article  CAS  PubMed  Google Scholar 

  • Sawyer EB, Claessen D, Haas M, Hurgobin B, Gras SL (2011) The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 6(4):18839–18839

    Article  Google Scholar 

  • Scholtemeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HAB (2004) The use of hydrophobins to functionalize surfaces. Bio-Med Mater Eng 14(4):447–454

    Google Scholar 

  • Scholtmeijer K, de Vocht ML, Rink R, Robillard GT, Wösten HAB (2009) Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284(39):26309–26314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan R, Jones EM, Liu K, Ghiso J, Marchant RE, Zagorski MG (2003) pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 333(5):1003–1023

    Article  CAS  PubMed  Google Scholar 

  • Stauffer CE (1965) The measurement of surface tension by the pendant drop technique. J Phys Chem 69(6):1933–1938

    Article  CAS  Google Scholar 

  • Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39(7):773–784

    Article  CAS  PubMed  Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  PubMed  Google Scholar 

  • Xu W, Zhang C, Derreumaux P, Graslund A, Morozova-Roche L, Mu Y (2011) Intrinsic determinants of Abeta12-24 pH-dependent self-assembly revealed by combined computational and experimental studies. PLoS One 6(9):1–12

    Google Scholar 

Download references

Acknowledgments

We would like to thank Karin Scholtmeijer and Han Wösten for stimulating discussions and their help with the water contact angle and surface tension measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dennis Claessen or Eize Stamhuis.

Additional information

David Matthias Ekkers and Dennis Claessen contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4147 kb)

(WMV 1646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekkers, D.M., Claessen, D., Galli, F. et al. Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl Microbiol Biotechnol 98, 4491–4501 (2014). https://doi.org/10.1007/s00253-013-5463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5463-z

Keywords

Navigation