Skip to main content
Log in

Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the production of triacylglycerols in cells of the wild type of Escherichia coli and of a strain with a deleted diacylglycerol kinase gene (dgkA). By overexpression of atfA from Acinetobacter baylyi ADP1 and fadD from E. coli in the dgkA deletion mutant, cellular contents of up to 4.9 % (w/w) triacylglycerols could be achieved in batch cultivation. Furthermore, heterologous expression of atfA relieves the negative effects of dgkA deletion on growth. Process optimization and fed-batch fermentation resulted in the production of 530 mg l1 triacylglycerols and a maximal content of 8.5 % (w/w) triacylglycerols of the cell dry mass. This clearly exceeded all previous results concerning triacylglycerol production in E. coli. Furthermore, the production of extracellular free fatty acids and fatty acid ethyl esters was investigated. Like triacylglycerols, both products are potential biofuels, and we show their continuous production in a repeated batch process, with recovery of the production cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albright FR, White DA, Lennarz WJ (1973) Studies on enzymes involved in the catabolism of phospholipids in Escherichia coli. J Biol Chem 248:3968–3977

    CAS  PubMed  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho H, Cronan JE Jr (1995) Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 270:4216–4219

    Article  CAS  PubMed  Google Scholar 

  • Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 12:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Fixter LM, McCormack JG (1976) The effect of growth conditions on the wax content of various strains of Acinetobacter. Biochem Soc Trans 4:504–505

    CAS  PubMed  Google Scholar 

  • Heath RJ, Jackowski S, Rock CO (1994) Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J Biol Chem 269:26584–26590

    CAS  PubMed  Google Scholar 

  • Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: Identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology (SGM) 152:2529–2536

    Article  CAS  Google Scholar 

  • Kennedy EP (1982) Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A 79:1092–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kol MA, Kuster DW, Boumann HA, de Cock H, Heck AJ, de Kruijff B, de Kroon AI (2004) Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli. Biochim Biophys Acta 1636:205–212

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218

    Article  CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 21:1–10

    Google Scholar 

  • Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN (2013) Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. PLOS ONE 8:e78595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M (2012) Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 11:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Pech-Canul A, Nogales J, Miranda-Molina A, Alvarez L, Geiger O, Soto MJ, Lopez-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raetz CR, Newman KF (1978) Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 253:3882–3887

    CAS  PubMed  Google Scholar 

  • Raetz CR, Newman KF (1979) Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol 137:860–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray TK, Cronan JE Jr (1975) Acylation of sn-glycerol 3-phosphate in Escherichia coli. Study of reaction with native palmitoyl-acyl carrier protein. J Biol Chem 250:8422–8427

    CAS  PubMed  Google Scholar 

  • Rucker J, Paul J, Pfeifer BA, Lee K (2013) Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions. Appl Microbiol Biotechnol 97:2753–2759

    Article  CAS  PubMed  Google Scholar 

  • Ruffing AM, Jones HD (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatisch T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  PubMed  Google Scholar 

  • Touze T, Blanot D, Mengin-Lecreulx D (2008) Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem 283:16573–16583

    Article  CAS  PubMed  Google Scholar 

  • Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology (SGM) 146:1143–1149

    Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:775–783

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M (2012) Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 5:76-6834-5-76

Download references

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janßen, H.J., Steinbüchel, A. Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1. Appl Microbiol Biotechnol 98, 1913–1924 (2014). https://doi.org/10.1007/s00253-013-5460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5460-2

Keywords

Navigation