Skip to main content
Log in

Recent trends and novel concepts in cofactor-dependent biotransformations

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16

Similar content being viewed by others

References

  • Ansell RJ, Lowe CR (1999) Artificial redox coenzymes: biomimetic analogues of NAD+. Appl Microbiol Biotechnol 51(6):703–710. doi:10.1007/s002530051455

    Article  CAS  Google Scholar 

  • Berenguer-Murcia A, Fernandez-Lafuente R (2010) New trends in the recycling of NAD(P)H for the design of sustainable asymmetric reductions catalyzed by dehydrogenases. Curr Org Chem 14(10):1000–1021

    Article  CAS  Google Scholar 

  • Berkessel A, Rollmann C, Chamouleau F, Labs S, May O, Gröger H (2007) Practical two-step synthesis of an enantiopure aliphatic terminal (S)-epoxide based on reduction of haloalkanones with “designer cells”. Adv Synth Catal 349(17–18):2697–2704. doi:10.1002/adsc.200700244

    Article  CAS  Google Scholar 

  • Bernard J, van Heerden E, Arends IWCE, Opperman DJ, Hollmann F (2012) Chemoenzymatic reduction of conjugated C=C double bonds. ChemCatChem 4(2):196–199. doi:10.1002/cctc.201100312

    Google Scholar 

  • Bisogno FR, Lavandera I, Kroutil W, Gotor V (2009) Tandem concurrent processes: one-pot single-catalyst biohydrogen transfer for the simultaneous preparation of enantiopure secondary alcohols. J Org Chem 74(4):1730–1732. doi:10.1021/jo802350f

    Article  CAS  PubMed  Google Scholar 

  • Bisogno FR, García-Urdiales E, Valdés H, Lavandera I, Kroutil W, Suárez D, Gotor V (2010a) Ketone–alcohol hydrogen-transfer equilibria: is the biooxidation of halohydrins blocked? Chem Eur J 16(36):11012–11019. doi:10.1002/chem.201001233

    Article  CAS  PubMed  Google Scholar 

  • Bisogno FR, Rioz-Martínez A, Rodríguez C, Lavandera I, de Gonzalo G, Torres Pazmiño DE, Fraaije MW, Gotor V (2010b) Oxidoreductases working together: concurrent obtaining of valuable derivatives by employing the PIKAT method. ChemCatChem 2(8):946–949. doi:10.1002/cctc.201000115

    Article  CAS  Google Scholar 

  • Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66(12):5161–5166. doi:10.1128/AEM.66.12.5161-5166.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boonstra B, Rathbone DA, Bruce NC (2001) Engineering novel biocatalytic routes for production of semisynthetic opiate drugs. Biomol Eng 18(2):41–47. doi:10.1016/S1389-0344(01)00084-3

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi:10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  • Campbell E, Meredith M, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48(13):1898–1900. doi:10.1039/c2cc16156g

    Article  CAS  Google Scholar 

  • Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14:147–197

    Article  CAS  PubMed  Google Scholar 

  • Churakova E, Tomaszewski B, Buehler K, Schmid A, Arends I, Hollmann F (2013) Hydrophobic formic acid esters for cofactor regeneration in aqueous/organic two-liquid phase systems. Top Catal. doi:10.1007/s11244-013-0195-y

    Google Scholar 

  • de Gonzalo G, Fraaije MW (2013) Recent developments in flavin-based catalysis. ChemCatChem 5(2):403–415. doi:10.1002/cctc.201200466

    Article  Google Scholar 

  • de Gonzalo G, Smit C, Jin J, Minnaard AJ, Fraaije MW (2011) Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chem Commun 47(39):11050–11052. doi:10.1039/c1cc14039f

    Article  Google Scholar 

  • Eixelsberger T, Woodley JM, Nidetzky B, Kratzer R (2013) Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone. Biotechnol Bioeng 110(8):2311–2315. doi:10.1002/bit.24896

    Article  CAS  PubMed  Google Scholar 

  • Ema T, Ide S, Okita N, Sakai T (2008) Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Adv Synth Catal 350(13):2039–2044. doi:10.1002/adsc.200800292

    Article  CAS  Google Scholar 

  • Faber K (2011) Biotransformations in organic chemistry, 6th edn. Springer, Berlin

    Book  Google Scholar 

  • Gargiulo S, Opperman DJ, Hanefeld U, Arends IWCE, Hollmann F (2012) A biocatalytic redox isomerisation. Chem Commun 48(53):6630–6632. doi:10.1039/c2cc31947k

    Article  CAS  Google Scholar 

  • Gonçalves LPB, Antunes OAC, Pinto GF, Oestreicher EG (2000) Simultaneous enzymatic synthesis of (S)-3-fluoroalanine and (R)-3-fluorolactic acid. Tetrahedron Asymmetry 11(7):1465–1468. doi:10.1016/S0957-4166(00)00096-3

    Article  Google Scholar 

  • Gonçalves LPB, Antunes OAC, Pinto GF, Oestreicher EG (2003) Kinetic aspects involved in the simultaneous enzymatic synthesis of (S)-3-fluoroalanine and (R)-3-fluorolactic acid. J Fluor Chem 124(2):219–227. doi:10.1016/j.jfluchem.2003.08.009

    Article  Google Scholar 

  • Gonçalves LPB, Antunes OAC, Oestreicher EG (2006) Thermodynamics and kinetic aspects involved in the enzymatic resolution of (R, S)-3-fluoroalanine in a coupled system of redox reactions catalyzed by dehydrogenases. Org Process Res Dev 10(3):673–677. doi:10.1021/op060027o

    Google Scholar 

  • Grau MM, van der Toorn JC, Otten LG, Macheroux P, Taglieber A, Zilly FE, Arends IWCE, Hollmann F (2009) Photoenzymatic reduction of C = C double bonds. Adv Synth Catal 351(18):3279–3286. doi:10.1002/adsc.200900560

    Google Scholar 

  • Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselective reduction of ketones with “designer cells” at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem Int Ed 45(34):5677–5681. doi:10.1002/anie.200503394

    Google Scholar 

  • Hefti MH, Vervoort J, Van Berkel WJH (2003) Deflavination and reconstitution of flavoproteins: tackling fold and function. Eur J Biochem 270(21):4227–4242. doi:10.1046/j.1432-1033.2003.03802.x

    Article  CAS  PubMed  Google Scholar 

  • Herr N, Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2013) Stability enhancement of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase by a combination of immobilisation and chemical modification. J Mol Catal B Enzym 97:169–174. doi:10.1016/j.molcatb.2013.06.009

    Article  CAS  Google Scholar 

  • Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. ChemCatChem 1(1):42–51. doi:10.1002/cctc.200900110

    Article  Google Scholar 

  • Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285. doi:10.1039/c1gc15424a

    Article  CAS  Google Scholar 

  • Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17(2):284–292. doi:10.1016/j.cbpa.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  • Islam K, Zheng W, Yu H, Deng H, Luo M (2011) Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem Biol 6(7):679–684. doi:10.1021/cb2000567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Maria PD (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47(44):12230–12232. doi:10.1039/c1cc14097c

    Article  CAS  Google Scholar 

  • Kara S, Schrittwieser JH, Hollmann F (2013a) Strategies for cofactor regeneration in biocatalyzed reductions, in synthetic methods for biologically active molecules: exploring the potential of bioreductions (ed E. Brenna), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi:10.1002/9783527665785.ch08

  • Kara S, Spickermann D, Schrittwieser JH, Leggewie C, van Berkel WJH, Arends IWCE, Hollmann F (2013b) More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’. Green Chem 15(2):330–335. doi:10.1039/c2gc36797a

    Google Scholar 

  • Klimašauskas S, Weinhold E (2007) A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 25(3):99–104. doi:10.1016/j.tibtech.2007.01.006

    Article  PubMed  Google Scholar 

  • Koszelewski D, Tauber K, Faber K, Kroutil W (2010) ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28(6):324–332. doi:10.1016/j.tibtech.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10(11):2155–2158. doi:10.1021/ol800549f

    Google Scholar 

  • Lee BWK, Sun HG, Zang T, Kim BJ, Alfaro JF, Zhou ZS (2010) Enzyme-catalyzed transfer of a ketone group from an S-adenosylmethionine analogue: a tool for the functional analysis of methyltransferases. J Am Chem Soc 132(11):3642–3643. doi:10.1021/ja908995p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerchner A, Achatz S, Rausch C, Haas T, Skerra A (2013) Coupled enzymatic alcohol-to-amine conversion of isosorbide using engineered transaminases and dehydrogenases. ChemCatChem 5:3374–3383. doi:10.1002/cctc.201300284

    Google Scholar 

  • Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369–384. doi:10.1016/j.biotechadv.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  • Lo HC, Fish RH (2002) Biomimetic NAD + models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41(3):478–481. doi:10.1002/1521-3773(20020201)41:3<478::aid-anie478>3.0.co;2-k

    Article  CAS  Google Scholar 

  • Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689(25):4783–4790. doi:10.1016/j.jorganchem.2004.09.044

    Article  CAS  Google Scholar 

  • Mallin H, Wulf H, Bornscheuer UT (2013) A self-sufficient Baeyer–Villiger biocatalysis system for the synthesis of ε-caprolactone from cyclohexanol. Enzym Microbiol Technol 53(4):283–287. doi:10.1016/j.enzmictec.2013.01.007

    Google Scholar 

  • Mathew S, Yun H (2012) ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal 2(6):993–1001. doi:10.1021/cs300116n

    Article  CAS  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 20(5):513–557. doi:10.1016/j.tetasy.2008.12.035

    Article  CAS  Google Scholar 

  • Meyer H-P, Eichhorn E, Hanlon S, Lutz S, Schurmann M, Wohlgemuth R, Coppolecchia R (2013) The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal Sci Technol 3(1):29–40. doi:10.1039/c2cy20350b

    Article  CAS  Google Scholar 

  • Motorin Y, Burhenne J, Teimer R, Koynov K, Willnow S, Weinhold E, Helm M (2011) Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling. Nucl Acids Res 39(5):1943–1952. doi:10.1093/nar/gkq825

    Article  CAS  PubMed  Google Scholar 

  • Müller CA, Akkapurathu B, Winkler T, Staudt S, Hummel W, Gröger H, Schwaneberg U (2013) In vitro double oxidation of n-heptane with direct cofactor regeneration. Adv Synth Catal 355(9):1787–1798. doi:10.1002/adsc.201300143

    Article  Google Scholar 

  • Muñoz Solano D, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196–207. doi:10.1016/j.biortech.2011.11.131

    Article  PubMed  Google Scholar 

  • Murthy YVSN, Meah Y, Massey V (1999) Conversion of a flavoprotein reductase to a desaturase by manipulation of the flavin redox potential. J Am Chem Soc 121(22):5344–5345. doi:10.1021/ja990908t

    Article  CAS  Google Scholar 

  • Nam DH, Park CB (2012) Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis. ChemBioChem 13(9):1278–1282. doi:10.1002/cbic.201200115

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Li C-X, Zhang J, Shen N-D, Bornscheuer UT, Xu J-H (2011) Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g L−1 by a bacterial reductase with broad substrate spectrum. Adv Synth Catal 353(8):1213–1217. doi:10.1002/adsc.201100132

    Google Scholar 

  • Ni Y, Hagedoorn PL, Xu JH, Arends IW, Hollmann F (2012a) A biocatalytic hydrogenation of carboxylic acids. Chem Commun 48(99):12056–12058. doi:10.1039/c2cc36479d

    Article  CAS  Google Scholar 

  • Ni Y, Pan J, Ma H-M, Li C-X, Zhang J, Zheng G-W, Xu J-H (2012b) Bioreduction of methyl o-chlorobenzoylformate at 500 g L−1 without external cofactors for efficient production of enantiopure clopidogrel intermediate. Tetrahedron Lett 53(35):4715–4717. doi:10.1016/j.tetlet.2012.06.097

    Article  CAS  Google Scholar 

  • Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F (2013) Mimicking nature: synthetic nicotinamide cofactors for C = C bioreduction using enoate reductases. Org Lett 15(1):180–183. doi:10.1021/ol303240a

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, Litchfield DW, Lüscher B, Weinhold E (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed 49(30):5170–5173. doi:10.1002/anie.201001240

    Article  CAS  Google Scholar 

  • Poizat M, Arends IWCE, Hollmann F (2010) On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes – analysis and potential remedies. J Mol Catal B Enzym 63(3–4):149–156. doi:10.1016/j.molcatb.2010.01.006

    Article  CAS  Google Scholar 

  • Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2012) Stabilisation of the NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 through modification with methoxy-poly(ethylene) glycol. J Mol Catal B Enzym 74(3–4):219–223. doi:10.1016/j.molcatb.2011.10.008

    Article  CAS  Google Scholar 

  • Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135(34):12480–12496. doi:10.1021/ja405051f

    Article  CAS  PubMed  Google Scholar 

  • Resch V, Fabian WMF, Kroutil W (2010) Deracemisation of mandelic acid to optically pure non-natural l-phenylglycine via a redox-neutral biocatalytic cascade. Adv Synth Catal 352(6):993–997. doi:10.1002/adsc.200900891

    Article  CAS  Google Scholar 

  • Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353(13):2239–2262. doi:10.1002/adsc.201100256

  • Richter M (2013) Functional diversity of organic molecule enzyme cofactors. Nat Prod Rep 30(10):1324–1345. doi:10.1039/c3np70045c

    Article  CAS  PubMed  Google Scholar 

  • Rioz-Martínez A, Bisogno FR, Rodríguez C, de Gonzalo G, Lavandera I, Torres Pazmiño DE, Fraaije MW, Gotor V (2010) Biocatalysed concurrent production of enantioenriched compounds through parallel interconnected kinetic asymmetric transformations. Org Biomol Chem 8(6):1431–1437. doi:10.1039/b925377g

    Article  PubMed  Google Scholar 

  • Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. ChemBioChem 9(16):2579–2582. doi:10.1002/cbic.200800246

    Article  CAS  PubMed  Google Scholar 

  • Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W (2012) Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed 51:9156–9159. doi:10.1002/anie.201204683

    Article  CAS  Google Scholar 

  • Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst. Adv Synth Catal 355(9):1693–1697. doi:10.1002/adsc.201200958

    Article  CAS  Google Scholar 

  • Schrittwieser JH, Sattler J, Resch V, Mutti FG, Kroutil W (2011) Recent biocatalytic oxidation–reduction cascades. Curr Opin Chem Biol 15(2):249–256. doi:10.1016/j.cbpa.2010.11.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen N-D, Ni Y, Ma H-M, Wang L-J, Li C-X, Zheng G-W, Zhang J, Xu J-H (2012) Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors. Org Lett 14(8):1982–1985. doi:10.1021/ol300397d

    Article  CAS  PubMed  Google Scholar 

  • Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today: Techn 10(1):e37–e44. doi:10.1016/j.ddtec.2012.08.002

    Article  Google Scholar 

  • Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H (2013a) Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ε-caprolactone. Enzym Microbiol Technol 53(4):288–292. doi:10.1016/j.enzmictec.2013.03.011

    Google Scholar 

  • Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H (2013b) Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water. Angew Chem Int Ed 52(8):2359–2363. doi:10.1002/anie.201204464

    Article  CAS  Google Scholar 

  • Stecher H, Tengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Biocatalytic Friedel–Crafts alkylation using non-natural cofactors. Angew Chem Int Ed 48(50):9546–9548. doi:10.1002/anie.200905095

    Article  CAS  Google Scholar 

  • Struck A-W, Thompson ML, Wong LS, Micklefield J (2012) S-Adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13(18):2642–2655. doi:10.1002/cbic.201200556

    Article  CAS  PubMed  Google Scholar 

  • Stueckler C, Reiter TC, Baudendistel N, Faber K (2010) Nicotinamide-independent asymmetric bioreduction of C = C-bonds via disproportionation of enones catalyzed by enoate reductases. Tetrahedron 66(3–2):663–667. doi:10.1016/j.tet.2009.11.065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT (2008) Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBiochem 9(4):565–572. doi:10.1002/cbic.200700435

    Google Scholar 

  • Tauber K, Fuchs M, Sattler JH, Pitzer J, Pressnitz D, Koszelewski D, Faber K, Pfeffer J, Haas T, Kroutil W (2013) Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols. Chem Eur J 19(12):4030–4035. doi:10.1002/chem.201202666

    Article  CAS  PubMed  Google Scholar 

  • Tengg M, Stecher H, Remler P, Eiteljörg I, Schwab H, Gruber-Khadjawi M (2012) Molecular characterization of the C-methyltransferase NovO of Streptomyces spheroides, a valuable enzyme for performing Friedel–Crafts alkylation. J Mol Catal B Enzym 84:2–8. doi:10.1016/j.molcatb.2012.03.016

    Article  CAS  Google Scholar 

  • Tong X, El-Zahab B, Zhao X, Liu Y, Wang P (2011) Enzymatic synthesis of l-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108(2):465–469. doi:10.1002/bit.22938

    Article  CAS  PubMed  Google Scholar 

  • Wandrey C, Fiolitakis E, Wichmann U, Kula MR (1984) l-Amino acids from a racemic mixture of α-hydroxy acids. Ann N Y Acad Sci 434:91–94

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zheng W, Yu H, Deng H, Luo M (2011) Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-l-methionine analogues. J Am Chem Soc 133(20):7648–7651. doi:10.1021/ja2006719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Land H, Berglund P (2013) An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase. Chem Commun 49(2):161–163. doi:10.1039/c2cc37232k

    Google Scholar 

  • Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. 120:195–242. doi:10.1007/10_2009_55

  • Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale technology transfer in biotechnology: from lab to industry to production. Adv Biochem Eng Biotechnol 92:225–260

    CAS  PubMed  Google Scholar 

  • Willetts AJ, Knowles CJ, Levitt MS, Roberts SM, Sandey H, Shipston NF (1991) Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones. J Chem Soc, Perkin 1(6):1608–1610. doi:10.1039/p19910001608

    Article  Google Scholar 

  • Willnow S, Martin M, Lüscher B, Weinhold E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. ChemBioChem 13(8):1167–1173. doi:10.1002/cbic.201100781

    Google Scholar 

  • Winkler CK, Clay D, van Heerden E, Faber K (2013) Overcoming co-product inhibition in the nicotinamide independent asymmetric bioreduction of activated C = C-bonds using flavin-dependent ene-reductases. Biotechnol Bioeng 110(12):3085–3092. doi:10.1002/bit.24981

    Google Scholar 

  • Winter JM, Chiou G, Bothwell IR, Xu W, Garg NK, Luo M, Tang Y (2013) Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org Lett 15(14):3774–3777. doi:10.1021/ol401723h

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Tian C, Song X, Liu C, Yang D, Jiang Z (2013) Methods for the regeneration of nicotinamide coenzymes. Green Chem 15(7):1773–1789. doi:10.1039/c3gc37129h

    Google Scholar 

  • Zhao H, Van Der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14(6):583–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JHS thanks the Austrian Science Fund (FWF) for financial support in the form of an “Erwin Schrödinger” fellowship (J3244-N17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selin Kara or Marion B. Ansorge-Schumacher.

Additional information

S. Kara and J. H. Schrittwieser contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kara, S., Schrittwieser, J.H., Hollmann, F. et al. Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 98, 1517–1529 (2014). https://doi.org/10.1007/s00253-013-5441-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5441-5

Keywords

Navigation