Skip to main content

Advertisement

Log in

Proteins improving recombinant antibody production in mammalian cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggarwal S (2011) What's fueling the biotech engine—2010 to 2011. Nat Biotechnol 29(12):1083–1089

    CAS  PubMed  Google Scholar 

  • Alete DE, Racher AJ, Birch JR, Stansfield SH, James DC, Smales CM (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics 5(18):4689–4704

    CAS  PubMed  Google Scholar 

  • Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14–21

    CAS  PubMed  Google Scholar 

  • Appenzeller-Herzog C, Riemer J, Zito E, Chin KT, Ron D, Spiess M, Ellgaard L (2010) Disulfide production by Ero1α-PDI relay is rapid and effectively regulated. EMBO J 29:3318–3329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahr SM, Borgschulte T, Kayser KJ, Lin N (2009) Using microarray technology to select housekeeping genes in Chinese hamster ovary cells. Biotechnol Bioeng 104(5):1041–1046

    CAS  PubMed  Google Scholar 

  • Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93(2):361–371

    CAS  PubMed  Google Scholar 

  • Barnes LM, Dickson AJ (2006) Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 17(4):381–386

    CAS  PubMed  Google Scholar 

  • Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M (2012) Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 11(11):5265–5276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135(2):217–223

    CAS  PubMed  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H (2010) Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. J Biotechnol 146(4):198–206

    CAS  PubMed  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291(5503):447–507

    CAS  PubMed  Google Scholar 

  • Bergman LW, Kuehl WM (1979) Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J Biol Chem 254(13):5690–5694

    CAS  PubMed  Google Scholar 

  • Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Xu J (2013) Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog. doi:10.1002/btpr.1767

    Google Scholar 

  • Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58(5–6):671–685

    CAS  PubMed  Google Scholar 

  • Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102(5):1558–1566

    CAS  PubMed  Google Scholar 

  • Borth N, Mattanovich D, Kunert R, Katinger H (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog 21(1):106–111

    CAS  PubMed  Google Scholar 

  • Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151(6):1163–1167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23(4):464–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23(4):1292–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12(5):615–622. doi:10.1016/j.coph.2012.08.001

    CAS  PubMed  Google Scholar 

  • Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol Prog 29(3):697–706

    CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    CAS  PubMed  Google Scholar 

  • Carlage T, Hincapie M, Zang L, Lyubarskaya Y, Madden H, Mhatre R, Hancock WS (2009) Proteomic profiling of a high-producing Chinese hamster ovary cell culture. Anal Chem 81(17):7357–7362

    CAS  PubMed  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    CAS  PubMed  Google Scholar 

  • Cenci S, Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581(19):3652–3657

    CAS  PubMed  Google Scholar 

  • Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91(7):779–792

    CAS  PubMed  Google Scholar 

  • Chung JY, Lim SW, Hong YJ, Hwang SO, Lee GM (2004) Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 85(5):539–546

    CAS  PubMed  Google Scholar 

  • Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359

    CAS  PubMed  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105(2):330–340

    CAS  PubMed  Google Scholar 

  • Cudna RE, Dickson AJ (2006) Engineering responsiveness to cell culture stresses: growth arrest and DNA damage gene 153 (GADD153) and the unfolded protein response (UPR) in NS0 myeloma cells. Biotechnol Bioeng 94(3):514–521

    CAS  PubMed  Google Scholar 

  • Datta P, Linhardt RJ, Sharfstein ST (2013) An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 110(5):1255–1271

    CAS  PubMed  Google Scholar 

  • Davis R, Schooley K, Rasmussen B, Thomas J, Reddy P (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog 16(5):736–743

    CAS  PubMed  Google Scholar 

  • Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077

    CAS  PubMed  Google Scholar 

  • Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One 7(8):e43394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dinnis DM, Stansfield SH, Schlatter S, Smales CM, Alete D, Birch JR, Racher AJ, Marshall CT, Nielsen LK, James DC (2006) Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 94(5):830–841

    CAS  PubMed  Google Scholar 

  • Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, McCarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106(1):42–56

    CAS  PubMed  Google Scholar 

  • Dorner AJ, Krane MG, Kaufman RJ (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol Cell Biol 8(10):4063–4070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorner AJ, Wasley LC, Kaufman RJ (1992) Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 11(4):1563–1571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du Z, Treiber D, McCoy RE, Miller AK, Han M, He F, Domnitz S, Heath C, Reddy P (2013) Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol Bioeng 110(8):2184–2194

    CAS  PubMed  Google Scholar 

  • Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569

    CAS  PubMed  Google Scholar 

  • Elkabetz Y, Argon Y, Bar-Nun S (2005) Cysteines in CH1 underlie retention of unassembled Ig heavy chains. J Biol Chem 280(15):14402–14412

    CAS  PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    CAS  PubMed  Google Scholar 

  • Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6(1):28–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feige MJ, Walter S, Buchner J (2004) Folding mechanism of the CH2 antibody domain. J Mol Biol 344(1):107–118

    CAS  PubMed  Google Scholar 

  • Feige MJ, Hagn F, Esser J, Kessler H, Buchner J (2007) Influence of the internal disulfide bridge on the folding pathway of the CL antibody domain. J Mol Biol 365(4):1232–1244

    CAS  PubMed  Google Scholar 

  • Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, Buchner J (2009) An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 34(5):569–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feige MJ, Hendershot LM, Buchner J (2010) How antibodies fold. Trends Biochem Sci 35(4):189–198

    CAS  PubMed  Google Scholar 

  • Fussenegger M, Mazur X, Bailey JE (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 55(6):927–939

    CAS  PubMed  Google Scholar 

  • Fussenegger M, Fassnacht D, Schwartz R, Zanghi JA, Graf M, Bailey JE, Pörtner R (2000) Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology 32(1):45–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galbete JL, Buceta M, Mermod N (2009) MAR elements regulate the probability of epigenetic switching between active and inactive gene expression. Mol BioSyst 5(2):143–150

    PubMed  Google Scholar 

  • Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277(50):49047–49054

    CAS  PubMed  Google Scholar 

  • Gass JN, Gunn KE, Sriburi R, Brewer JW (2004) Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol 25(1):17–24

    CAS  PubMed  Google Scholar 

  • Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753

    CAS  PubMed  Google Scholar 

  • Goto Y, Hamaguchi K (1982a) Unfolding and refolding of the constant fragment of the immunoglobulin light chain. J Mol Biol 156(4):891–910

    CAS  PubMed  Google Scholar 

  • Goto Y, Hamaguchi K (1982b) Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol 156(4):911–926

    CAS  PubMed  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306(5941):387–389

    CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    CAS  PubMed  Google Scholar 

  • Harraghy N, Gaussin A, Mermod N (2008) Sustained transgene expression using MAR elements. Curr Gene Ther 8(5):353–366

    CAS  PubMed  Google Scholar 

  • Hasegawa H (2013) Aggregates, crystals, gels, and amyloids: intracellular and extracellular phenotypes at the crossroads of immunoglobulin physicochemical property and cell physiology. Int J Cell Biol. doi:10.1155/2013/604867

  • Hasegawa H, Wendling J, He F, Trilisky E, Stevenson R, Franey H, Kinderman F, Li G, Piedmonte DM, Osslund T, Shen M, Ketchem RR (2011) In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells. J Biol Chem 286(22):19917–19931

    Google Scholar 

  • Hayes NV, Smales CM, Klappa P (2010) Protein disulfide isomerase does not control recombinant IgG4 productivity in mammalian cell lines. Biotechnol Bioeng 105(4):770–779

    CAS  PubMed  Google Scholar 

  • Hendershot LM, Sitia R (2004) Antibody synthesis and assembly. In: Honjo T, Alt FW, Neuberger MS (eds) Molecular biology of B cells. Elsevier, New York, pp 261–273

    Google Scholar 

  • Hendershot L, Bole D, Köhler G, Kearney JF (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104(3):761–767

    CAS  PubMed  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102

    CAS  PubMed  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91(4):1219–1243

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2(5):415–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang SO, Chung JY, Lee GM (2003) Effect of doxycycline-regulated ERp57 expression on specific thrombopoietin productivity of recombinant CHO cells. Biotechnol Prog 19(1):179–184

    CAS  PubMed  Google Scholar 

  • Jaluria P, Betenbaugh M, Konstantopoulos K, Shiloach J (2007) Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol 7:71

    PubMed Central  PubMed  Google Scholar 

  • Kantardjieff A, Jacob NM, Yee JC, Epstein E, Kok YJ, Philp R, Betenbaugh M, Hu WS (2010) Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. J Biotechnol 145(2):143–159

    CAS  PubMed  Google Scholar 

  • Kassenbrock CK, Garcia PD, Walter P, Kelly RB (1988) Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333(6168):90–93

    CAS  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    CAS  PubMed  Google Scholar 

  • Khan SU, Schröder M (2008) Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 57(3):207–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol 24:1–6

    Google Scholar 

  • Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107(2):95–105

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim YG, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 89(6):1917–1928

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930

    CAS  PubMed  Google Scholar 

  • Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16(4):343–349

    CAS  PubMed  Google Scholar 

  • Krampe B, Swiderek H, Al-Rubeai M (2008) Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Biotechnol Appl Biochem 50(Pt 3):133–141

    CAS  PubMed  Google Scholar 

  • Ku SC, Ng DT, Yap MG, Chao SH (2008) Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng 99(1):155–164

    CAS  PubMed  Google Scholar 

  • Ku SC, Toh PC, Lee YY, Chusainow J, Yap MG, Chao SH (2010) Regulation of XBP-1 signaling during transient and stable recombinant protein production in CHO cells. Biotechnol Prog 26(2):517–526

    CAS  PubMed  Google Scholar 

  • Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24(3):137–142

    CAS  PubMed  Google Scholar 

  • Le Fourn V, Girod PA, Buceta M, Regamey A, Mermod N (2013) CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab Eng

  • Lee YK, Brewer JW, Hellman R, Hendershot LM (1999) BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10(7):2209–2219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16(4):452–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

    CAS  PubMed  Google Scholar 

  • Li Q, Peterson KR, Fang X, Stamatoyannopoulos G (2002) Locus control regions. Blood 100(9):3077–3086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2(5):466–479

    PubMed Central  PubMed  Google Scholar 

  • Lindahl Allen M, Antoniou M (2007) Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics 2(4):227–236

    PubMed  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122

    CAS  PubMed  Google Scholar 

  • Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM (2010) Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15(3):281–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majors BS, Arden N, Oyler GA, Chiang GG, Pederson NE, Betenbaugh MJ (2008) E2F-1 overexpression increases viable cell density in batch cultures of Chinese hamster ovary cells. J Biotechnol 138(3–4):103–106

    CAS  PubMed  Google Scholar 

  • Majors BS, Betenbaugh MJ, Pederson NE, Chiang GG (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog 25(4):1161–1168

    CAS  PubMed  Google Scholar 

  • Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J (2011) Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 18(2):150–158

    CAS  PubMed  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823(3):774–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST (2012) Identifying bottlenecks in transient and stable production of recombinant monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol Prog 28(3):846–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80(6):706–716

    CAS  PubMed  Google Scholar 

  • Meleady P, Doolan P, Henry M, Barron N, Keenan J, O'Sullivan F, Clarke C, Gammell P, Melville MW, Leonard M, Clynes M (2011) Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. BMC Biotechnol 11:78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Müller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Pühler A, Clynes M, Borth N (2012) Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics. Biotechnol Bioeng 109(6):1386–1394

    CAS  PubMed  Google Scholar 

  • Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones Bip and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375

    CAS  PubMed  Google Scholar 

  • Mezghrani A, Fassio A, Benham A, Simmen T, Braakman I, Sitia R (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20(22):6288–6296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan C, Lee GM (2010) Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 107(2):337–346

    CAS  PubMed  Google Scholar 

  • Mohan C, Park SH, Chung JY, Lee GM (2007) Effect of doxycycline-regulated protein disulfide isomerase expression on the specific productivity of recombinant CHO cells: thrombopoietin and antibody. Biotechnol Bioeng 98(3):611–615

    CAS  PubMed  Google Scholar 

  • Mohan C, Kim YG, Koo J, Lee GM (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3(5):624–630

    CAS  PubMed  Google Scholar 

  • Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272(7):4327–4334

    CAS  PubMed  Google Scholar 

  • Murphy TC, Woods NR, Dickson AJ (2001) Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 75(6):621–629

    CAS  PubMed  Google Scholar 

  • Nishimiya D, Ogura Y, Sakurai H, Takahashi T (2012) Identification of antibody-interacting proteins that contribute to the production of recombinant antibody in mammalian cells. Appl Microbiol Biotechnol 96(4):971–979

    CAS  PubMed  Google Scholar 

  • Nishimiya D, Mano T, Miyadai K, Yoshida H, Takahashi T (2013) Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 97(6):2531–2539

    CAS  PubMed  Google Scholar 

  • Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KT, Hu WS, Sim MY, Philp R (2006) Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 34(2):125–140

    CAS  PubMed  Google Scholar 

  • Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299(5611):1394–1397

    CAS  PubMed  Google Scholar 

  • Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H (2008) Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 100(2):317–324

    CAS  PubMed  Google Scholar 

  • Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H (2008) Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J Biosci Bioeng 106(6):568–573

    CAS  PubMed  Google Scholar 

  • Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H (2009) Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 104(5):986–994

    CAS  PubMed  Google Scholar 

  • Otte AP, Kwaks TH, van Blokland RJ, Sewalt RG, Verhees J, Klaren VN, Siersma TK, Korse HW, Teunissen NC, Botschuijver S, van Mer C, Man SY (2007) Various expression-augmenting DNA elements benefit from STAR-Select, a novel high stringency selection system for protein expression. Biotechnol Prog 23(4):801–807

    CAS  PubMed  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389

    CAS  PubMed  Google Scholar 

  • Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC (2007) Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2):391–410

    CAS  PubMed  Google Scholar 

  • Peng RW, Fussenegger M (2009) Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 102(4):1170–1181

    CAS  PubMed  Google Scholar 

  • Peng RW, Abellan E, Fussenegger M (2011) Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 108(3):611–620

    CAS  PubMed  Google Scholar 

  • Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phi-Van L, von Kries JP, Ostertag W, Strätling WH (1990) The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol 10(5):2302–2307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronzoni R, Anelli T, Brunati M, Cortini M, Fagioli C, Sitia R (2010) Pathogenesis of ER storage disorders: modulating Russell body biogenesis by altering proximal and distal quality control. Traffic 11(7):947–957

    CAS  PubMed  Google Scholar 

  • Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21(1):122–133

    CAS  PubMed  Google Scholar 

  • Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  • Shen Y, Hendershot LM (2005) ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for Bip's interactions with unfolded substrates. Mol Biol Cell 16)(1):40–50

    Google Scholar 

  • Shusta EV, Raines RT, Plückthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16(8):773–777

    CAS  PubMed  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968):891–894

    CAS  PubMed  Google Scholar 

  • Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 88(4):474–488

    CAS  PubMed  Google Scholar 

  • Stansfield SH, Allen EE, Dinnis DM, Racher AJ, Birch JR, James DC (2007) Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnol Bioeng 97(2):410–424

    CAS  PubMed  Google Scholar 

  • Steiner LA, Lopes AD (1979) The crystallizable human myeloma protein Dob has a hinge-region deletion. Biochemistry 18(19):4054–4067

    CAS  PubMed  Google Scholar 

  • Steiner LA, Pardo AG, Margolies MN (1979) Amino acid sequence of the heavy-chain variable region of the crystallizable human myeloma protein Dob. Biochemistry 18(19):4068–4080

    CAS  PubMed  Google Scholar 

  • Stoops J, Byrd S, Hasegawa H (2012) Russell body inducing threshold depends on the variable domain sequences of individual human IgG clones and the cellular protein homeostasis. Biochim Biophys Acta 1823(10):1643–1657

    CAS  PubMed  Google Scholar 

  • Tamura T, Sunryd JC, Hebert DN (2010) Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 27(8):412–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tasso D, Gulbahce HE, Berger MJ, McKenna RW, Pambuccian SE (2012) Intracytoplasmic crystalline and globular inclusions in small lymphocytic lymphoma in transformation. Diagn Cytopathol 40(1):42–44

    PubMed  Google Scholar 

  • Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136(3):555–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68(1):31–43

    CAS  PubMed  Google Scholar 

  • Thies MJ, Mayer J, Augustine JG, Frederick CA, Lilie H, Buchner J (1999) Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization. J Mol Biol 293(1):67–79

    CAS  PubMed  Google Scholar 

  • Thies MJ, Talamo F, Mayer M, Bell S, Ruoppolo M, Marino G, Buchner J (2002) Folding and oxidation of the antibody domain C(H)3. J Mol Biol 319(5):1267–1277

    CAS  PubMed  Google Scholar 

  • Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8(3):264–272

    CAS  PubMed  Google Scholar 

  • Underhill MF, Coley C, Birch JR, Findlay A, Kallmeier R, Proud CG, James DC (2003) Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells. Biotechnol Prog 19(1):121–129

    CAS  PubMed  Google Scholar 

  • Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321(5888):569–572

    CAS  PubMed  Google Scholar 

  • van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I, Heck AJ (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18(2):243–253

    PubMed  Google Scholar 

  • Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924

    CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1981a) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91(2 Pt 1):551–556

    CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1981b) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91(2 Pt 1):557–561

    CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    CAS  PubMed  Google Scholar 

  • Walter P, Ibrahimi I, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91(2 Pt 1):545–550

    CAS  PubMed  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17(19):5708–5717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiest DL, Burkhardt JK, Hester S, Hortsch M, Meyer DI, Argon Y (1990) Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J Cell Biol 110(5):1501–1511

    CAS  PubMed  Google Scholar 

  • Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119(Pt 4):615–623

    CAS  PubMed  Google Scholar 

  • Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, Irvine A, Mountain A, Crombie R (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 5:17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wlaschin KF, Nissom PM, Gatti Mde L, Ong PF, Arleen S, Tan KS, Rink A, Cham B, Wong K, Yap M, Hu WS (2005) EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol Bioeng 91(5):592–606

    CAS  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    CAS  PubMed  Google Scholar 

  • Xu P, Raden D, Doyle FJ 3rd, Robinson AS (2005) Analysis of unfolded protein response during single-chain antibody expression in Saccharomyces cerevisiae reveals different roles for BiP and PDI in folding. Metab Eng 7(4):269–279

    CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376

    CAS  PubMed  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    CAS  PubMed  Google Scholar 

  • Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F (2011) Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 108(5):1078–1088

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nishimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimiya, D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 98, 1031–1042 (2014). https://doi.org/10.1007/s00253-013-5427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5427-3

Keywords

Navigation