Skip to main content

Advertisement

Log in

Humus-reducing microorganisms and their valuable contribution in environmental processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M, Yamamoto R, Shimomura T, Miya A (2010) Microbial fuel cells with a mediator polymer modified anode. Electrochemistry 78(10):814–816

    CAS  Google Scholar 

  • Aeschbacher M, Sander M, Schwarzenbach RP (2010) Novel electrochemical approach to assess the redox properties of humic substances. Environ Sci Technol 44(1):87–93

    PubMed  CAS  Google Scholar 

  • Alvarez LH, Cervantes FJ (2012) Assessing the impact of alumina nanoparticles in an anaerobic consortium: methanogenic and humus reducing activity. Appl Microbiol Biotechnol 95(5):1323–1331

    PubMed  CAS  Google Scholar 

  • Alvarez LH, Perez-Cruz MA, Rangel-Mendez JR, Cervantes FJ (2010) Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. J Hazard Mater 184(1–3):268–272

    PubMed  CAS  Google Scholar 

  • Alvarez LH, Jimenez-Bermudez L, Hernandez-Montoya V, Cervantes FJ (2012) Enhanced dechlorination of carbon tetrachloride by immobilized fulvic acids on alumina particles. Water Air Soil Poll 223(4):1911–1920

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediat J 3(2):121–135

    CAS  Google Scholar 

  • Aranda-Tamaura C, Estrada-Alvarado MI, Texier AC, Cuervo F, Gomez J, Cervantes FJ (2007) Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification. Chemosphere 69(11):1722–1727

    PubMed  CAS  Google Scholar 

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64(11):4507–4512

    PubMed  CAS  Google Scholar 

  • Bird LJ, Bonnefoy V, Newman DK (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19(7):330–340

    PubMed  CAS  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10(2):111–134

    CAS  Google Scholar 

  • Blodau C, Deppe M (2012) Humic acid addition lowers methane release in peats of the Mer Blue bog, Canada. Soil Biol Biochem 52:96–98

    CAS  Google Scholar 

  • Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4(2):115–124

    PubMed  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64(8):3102–3105

    PubMed  CAS  Google Scholar 

  • Cao F, Liu TX, Wu CY, Li FB, Li MX, Yu HY, Tong H, Chen MJ (2012) Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). J Agr Food Chem 60(45):11238–11244

    CAS  Google Scholar 

  • Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci U S A 109(5):1702–1707

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000a) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34(2):161–171

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Van der Velde S, Lettinga G, Field JA (2000b) Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11(5):313–321

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001a) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67(10):4471–4478

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, van der Zee FP, Lettinga G, Field JA (2001b) Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Sci Technol 44(4):123–128

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, de Bok FAM, Tuan DD, Stams AJM, Lettinga G, Field JA (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 4(1):51–57

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Gutiérrez CH, López KY, Estrada-Alvarado MI, Meza-Escalante ER, Texier AC, Cuervo F, Gómez J (2008) Contribution of quinone-reducing microorganisms on the anaerobic biodegradation of organic compounds under different redox conditions. Biodegradation 19(2):235–246

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Garcia-Espinosa A, Moreno-Reynosa MA, Rangel-Mendez JJ (2010) Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. Environ Sci Technol 44(5):1747–1753

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, González-Estrella J, Márquez A, Alvarez LH, Arriaga S (2011a) Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Bioresource Technol 102(2):2097–2100

    CAS  Google Scholar 

  • Cervantes FJ, Mancilla AR, Ríos-del Toro EE, Alpuche-Solis AG, Montoya-Lorenzana L (2011b) Anaerobic benzene oxidation by enriched inocula with humic acids as terminal electron acceptors. J Hazard Mat 195(1):201–207

    CAS  Google Scholar 

  • Cervantes FJ, Rangel-Méndez R, García-Espinosa A, Moreno-Reynosa MA, Razo-Flores E (2012) Immobilized redox mediators for the treatment of contaminated waters and gas emissions. USA Patent, US8,147,701B2

  • Cervantes FJ, Martínez CM, Gonzalez-Estrella J, Marquez A, Arriaga S (2013) Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids. Appl Microbiol Biotechnol 97(6):2671–2679

    PubMed  CAS  Google Scholar 

  • Chen JH, Ni JC, Liu QL, Li SX (2012) Adsorption behavior of Cd(II) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent. Desalination 285:54–61

    CAS  Google Scholar 

  • Chen BY, Hsueh CC, Liu SQ, Hung JY, Qiao Y, Yueh PL, Wang YM (2013a) Unveiling characteristics of dye-bearing microbial fuel cells for energy and materials recycling: redox mediators. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2013.03.132

    Google Scholar 

  • Chen N, Wu C, Li Q, Deng X (2013a) Kocuria Rosea HN01: a newly discovered alkaliphilic humic-reducing bacteria isolated from cassava dregs composting. In: L Xu J et al. (eds). Functions of natural organic matter in changing environment. Springer: New York. pp 869–871

  • Coates JD, Ellis DJ, Roden E, Gaw K, Blunt-Harris EL, Lovley DR (1998) Recovery of humics-reducing bacteria from a diversity of sedimentary environments. Appl Environ Microbiol 64(4):1504–1509

    PubMed  CAS  Google Scholar 

  • Coates JD, Bhupathiraju VK, Achenbach LA, McInerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)- reducers. Int J Syst Evol Microbiol 51(Pt 2):581–588

    PubMed  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28(3):193–202

    CAS  Google Scholar 

  • Deng L, Li F, Zhou S, Huang D, Ni J (2010) A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull 55(1):99–104

    CAS  Google Scholar 

  • Dunnivant FM, Schwarzenbach RP, Macalady DL (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol 26(11):2133–2141

    CAS  Google Scholar 

  • Field JA (2001) Recalcitrance as a catalyst for new developments. Water Sci Technol 44(8):33–40

    PubMed  CAS  Google Scholar 

  • Filip ZK, Bielek P, Demnerova K (2011) Prerequisites and susceptibility of humic acids to microbial utilization and transformation—a review. Arch Agro Soil Sci 57(5):445–454

    CAS  Google Scholar 

  • Fimmen RL, Cory RM, Chin Y-P, Trouts TD, McKnight DM (2007) Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71(12):3003–3015

    CAS  Google Scholar 

  • Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45(4):1763–1773

    PubMed  CAS  Google Scholar 

  • Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66(2):543–548

    PubMed  CAS  Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000a) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011

    PubMed  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SMW, Krupka KM (2000b) Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64(18):3085–3098

    CAS  Google Scholar 

  • Freguia S, Masuda M, Tsujimura S, Kano K (2009) Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76(1–2):14–18

    PubMed  CAS  Google Scholar 

  • Gavrilov SN, Lloyd JR, Kostrikina NA, Slobodkin AI (2012) Fe(III) oxide reduction by a gram-positive thermophile: physiological mechanisms for dissimilatory reduction of poorly crystalline Fe(III) oxide by a thermophilic gram-positive bacterium Carboxydothermus ferrireducens. Geomicrobiol J 29(9):804–819

    CAS  Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Salah Uddin M, Yu H (2007) Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41(2):426–432

    PubMed  CAS  Google Scholar 

  • Guo J, Kang L, Yang J, Wang X, Lian J, Li H, Guo Y, Wang Y (2010) Study on a novel non-dissolved redox mediator catalyzing biological denitrification (RMBDN) technology. Bioresour Technol 101(11):4238–4241

    PubMed  CAS  Google Scholar 

  • Hatch JL, Finneran KT (2008) Influence of reduced electron shuttling compounds on biological H2 production in the fermentative pure culture Clostridium beijerinckii. Curr Microbiol 56(3):268–273

    PubMed  CAS  Google Scholar 

  • Heitmann T, Goldhammer T, Beer J, Blodau C (2007) Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob Chang Biol 13(8):1771–1785

    Google Scholar 

  • Hennebel T, De Gusseme B, Boon N, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27(2):90–98

    PubMed  CAS  Google Scholar 

  • Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70(12):7236–7240

    PubMed  CAS  Google Scholar 

  • Hernández-Montoya V, Alvarez LH, Montes-Morán MA, Cervantes FJ (2012) Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens. Geoderma 183–184:25–31

    Google Scholar 

  • Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70(2):1234–1237

    PubMed  CAS  Google Scholar 

  • Huang L, Angelidaki I (2008) Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol Bioeng 100(3):413–422

    PubMed  CAS  Google Scholar 

  • Huang D-Y, Zhuang L, Cao W-D, Xu W, Zhou S-G, Li F-B (2010) Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. J Soil Sediments 10(4):722–729

    CAS  Google Scholar 

  • Keller JK, Bridgham SD (2007) Pathways of anaerobic carbon cycling across an ombrotrophic–minerotrophic peatland gradient. Limnol Oceanogr 52(1):96–107

    CAS  Google Scholar 

  • Keller JK, Takagi KK (2013) Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4(5):45

    Google Scholar 

  • Keller JK, Weisenhorn PB, Megonigal JP (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem 41(7):1518–1522

    CAS  Google Scholar 

  • Klavins M, Aspite E (1997) Immobilization of humic substances. In: Drozd J, Gonet SS, Senesi N, Weber J (eds) The role of humic substances in the ecosystems and in environmental protection. PTSH-Polish Society of Humic Subtances, Wroclaw

    Google Scholar 

  • Koopal LK, Yang Y, Minnaard AJ, Theunissen PLM, Van Riemsdijk WH (1998) Chemical immobilisation of humic acid on silica. Colloid surf A 141(3):385–395

    CAS  Google Scholar 

  • Lee IG, Kim SJ, Ahn TY (2000) Inhibitory effect of nitrate on Fe(III) and humic acid reduction in Shewanella putrefaciens DK-1. J Microbiol 38(3):180–182

    CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185

    CAS  Google Scholar 

  • Li L, Wang J, Zhou J, Yang F, Jin C, Qu Y, Li A, Zhang L (2008) Enhancement of nitroaromatic compounds anaerobic biotransformation using a novel immobilized redox mediator prepared by electropolymerization. Bioresour Technol 99(15):6908–6916

    PubMed  CAS  Google Scholar 

  • Li L, Zhou J, Wang J, Yang F, Jin C, Zhang G (2009) Anaerobic biotransformation of azo dye using polypyrrole/anthraquinonedisulphonate modified active carbon felt as a novel immobilized redox mediator. Sep Purif Technol 66(2):375–382

    CAS  Google Scholar 

  • Li H, Guo J, Lian J, Zhao L, Xi Z, Du H, Yang J (2013) Effective and characteristics of anthraquinone-2,6-disulfonate (AQDS) on denitrification by Paracoccus versutus sp. GW1. Environ Technol. doi:10.1080/09593330.2013.781198

    Google Scholar 

  • Lin J, Zhan Y (2012) Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem Eng J 200–202:202–213

    Google Scholar 

  • Lipson DA, Jha M, Raab TK, Oechel WC (2010) Reduction of Fe(III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res 115:G00I06. doi:10.1029/2009JG001147

    Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62(1):288–291

    PubMed  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26(3):152–157

    CAS  Google Scholar 

  • Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169(3–4):289–298

    CAS  Google Scholar 

  • Lu H, Zhou J, Wang J, Si W, Teng H, Liu G (2010) Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Bioresour Technol 101(18):7196–7199

    PubMed  Google Scholar 

  • Luijten MLGC, Weelink SAB, Godschalk B, Langenhoff AAM, van Eekert MHA, Schraa G, Stams AJM (2004) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49(1):145–150

    PubMed  CAS  Google Scholar 

  • Luo D, Yu QW, Yin HR, Feng YQ (2007) Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils. Anal Chim Acta 588(2):261–267

    PubMed  CAS  Google Scholar 

  • Ma C, Wang YQ, Zhuang L, Huang DY, Zhou SG, Li FB (2011) Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, Pseudomonas aeruginosa strain PAH-1. J Soil Sediment 11(6):923–929

    CAS  Google Scholar 

  • Ma C, Zhuang L, Zhou SG, Yang GQ, Yuan Y, Xu RX (2012) Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. J Appl Microbiol 112(5):883–891

    PubMed  CAS  Google Scholar 

  • Ma C, Zhou S, Lu Q, Yang G, Wang D, Zhuang L, Li F, Lei F (2013) Decolorization of Orange I under alkaline and anaerobic conditions by a newly isolated humus-reducing bacterium, Planococcus sp. MC01. Int Biodeterior Biodegrad 83:17–24

    CAS  Google Scholar 

  • Macalady DL, Walton-Day K (2011) Redox chemistry and natural organic matter (NOM): Geochemists’ dream, analytical chemists’ nightmare. In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry. American Chemical Society, Washington, DC, pp 85–111

    Google Scholar 

  • Martinez CM, Alvarez LH, Cervantes FJ (2012) Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids. Biodegradation 23(5):635–644

    PubMed  CAS  Google Scholar 

  • Martínez CM, Celis LB, Cervantes FJ (2013) Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor. Appl Microbiol Biotechnol 97:9897–9905.

    Google Scholar 

  • Reactive Red 2 in a UASB reactor. Appl. Microbiol. Biotechnol. 97, 9897-9905.

  • Nasirahmadi S, Safekordi AA (2012) Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell. Int J Environ Sci Technol 9(3):473–478

    CAS  Google Scholar 

  • Nepomnyashchaya YN, Slobodkina GB, Baslerov RV, Chernyh NA, Bonch-Osmolovskaya EA, Netrusov AI, Slobodkin AI (2012) Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). Int J Syst Evol Microbiol 62(3):613–617

    PubMed  CAS  Google Scholar 

  • Neubauer SC, Givler K, Valentine SK, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86(12):3334–3344

    Google Scholar 

  • Newman DK, Kolter R (2000) A role of excreted quinones in extracellular electron transfer. Nature 405(6782):94–97

    PubMed  CAS  Google Scholar 

  • Pat-Espadas AM, Razo-Flores E, Rangel-Mendez JR, Cervantes FJ (2013) Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens. Appl Microbiol Biotechnol 97(21):9553–9560

    PubMed  CAS  Google Scholar 

  • Perminova IV, Kovalenko AN, Schmitt-Kopplin P, Hatfield K, Hertkorn N, Belyaeva EY, Petrosyan VS (2005) Design of quinonoid-enriched humic materials with enhanced redox properties. Environ Sci Technol 39:8518–8524

    PubMed  CAS  Google Scholar 

  • Perminova IV, Karpiouk L, Shcherbina N, Ponomarenko S, Kalmykov S, Hatfield K (2007a) Preparation and use of humic coatings covalently bound to silica gel for Np(V) and Pu(V) sequestration. J Alloy Compd 444–445:512–517

    Google Scholar 

  • Perminova IV, Ponomarenko SA, Karpiouk LA, Hatfield K (2007b) Humic derivatives methods of preparation and use. PCT world patent, WO/2007/102750

  • Prado AGS, Miranda BS, Dias JA (2004) Attachment of two distinct humic acids onto a silica gel surface. Colloid Surf A 242(1–3):137–143

    CAS  Google Scholar 

  • Qian X, Mester T, Morgado L, Arakawa T, Sharma ML, Inoue K, Joseph C, Salgueiro CA, Maroney MJ, Lovley DR (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. Biochim Biophys Acta 1807:404–412

    PubMed  CAS  Google Scholar 

  • Ratasuk N, Nanny MA (2007) Characterization and quantification of reversible redox sites in humic substances. Environ Sci Technol 41(22):7844–7850

    PubMed  CAS  Google Scholar 

  • Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36(7):1497–1502

    PubMed  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39(12):4666–4671

    PubMed  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634

    PubMed  CAS  Google Scholar 

  • Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu H (2010) Extracellular electron transfer through microbial reduction of humic substances. Nat Geosci 3:417–421

    CAS  Google Scholar 

  • Sass H, Ramamoorthy S, Yarwood C, Langner H, Schumann P, Kroppenstedt RM, Spring S, Rosenzweig RF (2009) Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol 59(Pt 9):2208–2214

    PubMed  CAS  Google Scholar 

  • Schmeide K, Sachs S, Bernhard G (2012) Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid. Sci Total Environ 419:116–123

    PubMed  CAS  Google Scholar 

  • Schnitzer M, Riffaldi R (1972) The determination of quinone groups in humic substances. Soil Sci Soc Am Proc 36(5):772–777

    Google Scholar 

  • Scott DT, McKnight DM, Blunt Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32(19):2984–2989

    CAS  Google Scholar 

  • Slepova TV, Sokolova TG, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2009) Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 59(2):213–219

    PubMed  CAS  Google Scholar 

  • Slobodkin AI, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA (1999) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49(Pt 4):1471–1478

    PubMed  Google Scholar 

  • Sposito G (2011) Electron shuttling by natural organic matter: twenty years after. In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry. American Chemical Society, Washington, DC, pp 113–127

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition reactions. Wiley, New York

    Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic enviroments at near neutral pH. FEMS Microbiol Ecol 34(3):181–186

    PubMed  CAS  Google Scholar 

  • Su Y, Zhang Y, Wang J, Zhou J, Lu X, Lu H (2009) Enhanced bio-decolorization of azo dyes by co-immobilized quinone-reducing consortium and anthraquinone. Bioresour Technol 100(12):2982–2987

    PubMed  CAS  Google Scholar 

  • Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour Technol 142:407–414

    PubMed  CAS  Google Scholar 

  • Sund CJ, McMasters S, Crittenden SR, Harrell LE (2007) Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76(3):561–568

    PubMed  CAS  Google Scholar 

  • Tang X, Du Z, Li H (2010) Anodic electron shuttle mechanism based on 1-hydroxy-4 aminoanthraquinone in microbial fuel cells. Electrochem Commun 12(8):1140–1143

    CAS  Google Scholar 

  • Tatsumi H, Kano K, Ikeda T (2000) Kinetic analysis of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors. J Phys Chem B 104:12079–12083

    CAS  Google Scholar 

  • Thygesen A, Poulsen FW, Min B, Angelidaki I, Thomsen AB (2009) The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresour Technol 100(3):1186–1191

    PubMed  CAS  Google Scholar 

  • Tratnyek PG, Macalady DL (1989) Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. J Agr Food Chem 37(1):248–254

    CAS  Google Scholar 

  • Tuo Y, Liu G, Zhou J, Wang A, Wang J, Jin R, Lv H (2013) Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresour Technol 133:606–611

    PubMed  CAS  Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    PubMed  Google Scholar 

  • Van der Zee FP, Bouwman RHM, Strik DPBTB, Lettinga G, Field JA (2001) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol Bioeng 75(6):691–701

    PubMed  Google Scholar 

  • Van Trump JI, Sun Y, Coates JD (2006) Microbial interactions with humic substances. Adv Appl Microbiol 60:55–96

    PubMed  Google Scholar 

  • Wang J, Li LH, Zhou JT, Lu H, Liu GF, Jin RF, Yang FL (2009a) Enhanced biodecolorization of azo dyes by electropolymerization-immobilized redox mediator. J Hazard Mater 168(2–3):1098–1104

    CAS  Google Scholar 

  • Wang Y, Wu C, Wang X, Zhou S (2009b) The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. J Hazard Mat 164(2–3):941–947

    CAS  Google Scholar 

  • Wang X, Liu G, Zhou J, Wanga J, Jin R, Lv H (2011a) Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Bioresour Technol 102(3):3268–3271

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Zhu X, Jin S (2011b) Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. J Environ Sci 23(8):1286–1292

    CAS  Google Scholar 

  • Wang J, Fu Z, Liu G, Guo N, Lu H, Zhan Y (2013a) Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB Bioresour Technol 142:192–197

    CAS  Google Scholar 

  • Wang J, Lu H, Zhou Y, Songa Y, Liu G, Feng Y (2013b) Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. J Hazard Mater 252–253:227–232

    PubMed  Google Scholar 

  • Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106(6):528–536

    PubMed  CAS  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641

    PubMed  CAS  Google Scholar 

  • Weelink SAB, Van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov. sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70(3):575–585

    PubMed  CAS  Google Scholar 

  • Wei N, Finneran KT (2009) Microbial community analyses of three distinct, liquid cultures that degrade methyl tert-butyl ether using anaerobic metabolism. Biodegradation 20(5):695–707

    PubMed  CAS  Google Scholar 

  • Willner I, Arad G, Katz E (1998) A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. Bioelectrochem Bioenerg 44(2):209–214

    CAS  Google Scholar 

  • Wu C, Zhuang L, Zhou S, Yuan Y, Yuan T, Li F (2012) Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-day by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb Biotechnol 6:141–149

    PubMed  Google Scholar 

  • Yagishita T, Sawayama S, Tsukahara KI, Ogi T (1997) Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Sol Energy 61(5):347–353

    Google Scholar 

  • Yamazaki S, Kaneko T, Taketomo N, Kano K, Ikeda T (2002) Glucose metabolism of lactic acid bacteria changed by quinone- mediated extracellular electron transfer. Biosci Biotechnol Biochem 66(10):2100–2106

    PubMed  CAS  Google Scholar 

  • Yang G, Zhou X, Zhou S, Yang D, Wang Y, Wang D (2013a) Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.048942-0

    Google Scholar 

  • Yang G-Q, Zhang J, Kwon S-W, Zhou S-G, Han L-C, Chen M, Ma C, Zhuang L (2013b) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(Pt 3):873–878

    PubMed  CAS  Google Scholar 

  • Yavitt JB, Seidman-Zager M (2006) Methanogenic conditions in northern peat soils. Geomicrobiol J 23(2):119–127

    CAS  Google Scholar 

  • Ye X, Morgenroth E, Zhang X, Finneran KT (2011) Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii. Appl Microbiol Biotechnol 92(4):855–864

    PubMed  CAS  Google Scholar 

  • Ye X, Zhang X, Morgenroth E, Finneran KT (2012) Anthrahydroquinone-2,6-disulfonate increases the rate of hydrogen production during Clostridium beijerinckii fermentation with glucose, xylose, and cellobiose. Int J Hydrog Energy 37(16):11701–11709

    CAS  Google Scholar 

  • Ye X, Zhang X, Morgenroth E, Finneran KT (2013) Exogenous anthrahydroquinone-2,6-disulfonate specifically increases xylose utilization during mixed sugar fermentation by Clostridium beijerinckii NCIMB 8052. Int J Hydrog Energy 38(6):2719–2727

    CAS  Google Scholar 

  • Yoneda Y, Yoshida T, Kawaichi S, Daifuku T, Takabe K, Sako Y (2012) Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring. Int J Syst Evol Microbiol 62(7):1692–1697

    PubMed  CAS  Google Scholar 

  • Yoneda Y, Yoshida T, Yasuda H, Imada C, Sako Y (2013) A novel thermophilic, hydrogenogenic, and carboxydotrophic bacterium Calderihabitans maritimus gen. nov., sp. nov. from a marine sediment core of an undersea caldera. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.050468-0

    PubMed  Google Scholar 

  • Yuan SZ, Lu H, Wang J, Zhou JT, Wang Y, Liu GF (2012) Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions. Process Biochem 47(2):312–318

    CAS  Google Scholar 

  • Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (2007) Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11(1):1–7

    PubMed  CAS  Google Scholar 

  • Zavarzina DG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.—strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology 78(6):723–731

    CAS  Google Scholar 

  • Zhang C, Katayama A (2012) Humin as an electron mediator for microbial reductive dehalogenation. Environ Sci Technol 46(12):6575–6583

    PubMed  CAS  Google Scholar 

  • Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78(23):8304–8310

    PubMed  CAS  Google Scholar 

  • Zhang X, Ye X, Guo B, Finneran KT, Zilles JL, Morgenroth E (2013a) Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Bioresour Technol 147:89–95

    PubMed  CAS  Google Scholar 

  • Zhang X, Ye X, Finneran KT, Zilles JL, Morgenroth E (2013b) Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2,6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. Biotechnol Bioeng 110(1):164–172

    PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzina DG, Panteleeva AN, Osipov GA, Kostrikina NA, Tourova TP, Zavarzin GA (2012) Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62(Pt 7):1666–1673

    PubMed  CAS  Google Scholar 

  • Zhou S, Han L, Wang Y, Yang G, Zhuang L, Hu P (2012) Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(Pt 7):2618–2624

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by Council of Science and Technology of Mexico (grant SEP-CONACYT 155656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, C.M., Alvarez, L.H., Celis, L.B. et al. Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97, 10293–10308 (2013). https://doi.org/10.1007/s00253-013-5350-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5350-7

Keywords

Navigation