Skip to main content

Advertisement

Log in

β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Baicalin (baicalein 7-O-β-d-glucuronide) is one of the major flavonoid glucuronides found in traditional herbal medicines. Because its aglycone, baicalein, is absorbed more quickly and shows more effective properties than baicalin, the conversion of baicalin into baicalein by β-glucuronidase (GUS) has drawn the attention of researchers. Recently, we have found that Lactobacillus brevis subsp. coagulans can convert baicalin to baicalein. Therefore, we aimed to identify and characterize the converting enzyme from L. brevis subsp. coagulans. First, we purified this enzyme from the cell-free extracts of L. brevis subsp. coagulans and cloned its gene. Surprisingly, this enzyme was found to be a GUS belonging to glycoside hydrolase (GH) family 30 (designated as LcGUS30), and its amino acid sequence has little similarity with any GUS belonging to GH families 1, 2, and 79 that have been reported so far. We then established a high-level expression and simple purification system of the recombinant LcGUS30 in Escherichia coli. The detailed analysis of the substrate specificity revealed that LcGUS30 has strict specificity toward glycon but not toward aglycones. Interestingly, LcGUS30 prefers baicalin rather than estrone 3-(β-d-glucuronide), one of the human endogenous steroid hormones. These results indicated that L. brevis subsp. coagulans and LcGUS30 should serve as powerful tools for the construction of a safe bioconversion system for baicalin. In addition, we propose that this novel type of GUS forms a new group in subfamily 3 of GH family 30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlercreutz H, Martin F, Pulkkinen M, Dencker H, Rimér U, Sjöberg NO, Tikkanen MJ (1976) Intestinal metabolism of estrogens. J Clin Endocrinol Metab 43:497–505. doi:10.1210/jcem-43-3-497

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz H, Martin F, Järvenpää P, Fotsis T (1979) Steroid absorption and enterohepatic recycling. Contraception 20:201–223. doi:10.1016/0010-7824(79)90094-5

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aspeborg H, Coutinho PM, Wang Y, Brumer H 3rd, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186. doi:10.1186/1471-2148-12-186

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bowers LD, Johnson PR (1981) Characterization of immobilized β-glucuronidase in aqueous and mixed solvent systems. Biochim Biophys Acta 661:100–105. doi:10.1016/0005-2744(81)90087-5

    Article  CAS  Google Scholar 

  • Brumshtein B, Greenblatt HM, Butters TD, Shaaltiel Y, Aviezer D, Silman I, Futerman AH, Sussman JL (2007) Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid β-glucosidase: insights into the mechanism of chemical chaperone action in Gaucher disease. J Biol Chem 282:29052–29058. doi:10.1074/jbc.M705005200

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A 105:9805–9810. doi:10.1073/pnas.0803223105

    Article  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunesekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222. doi:10.1093/nar/gkr1065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Graef V, Furuya E, Nishikaze O (1977) Hydrolysis of steroid glucuronides with beta-glucuronidase preparations from bovine liver, Helix pomatia, and E. coli. Clin Chem 23:532–535

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, Kishimoto T (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55:951–955. doi:10.1016/S0090-4295(00)00467-2

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiently transformation of Escherichia coli with plasmids. Gene 96:23–28. doi:10.1016/0378-1119(90)90336-P

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Kim JY, Park MS, Zheng H, Ji GE (2009) Cloning and expression of β-glucuronidase from Lactobacillus brevis in E. coli and application in bioconversion of baicalin and wogonoside. J Microb Biotechnol 19:1650–1655

    Article  CAS  Google Scholar 

  • Kishi A, Uno K, Matsubara Y, Okuda C, Kishida T (1996) Effect of the oral administration of Lactobacillus brevis subsp. coagulans on interferon-alpha producing capacity in humans. J Am Coll Nutr 15:408–412

    Article  PubMed  CAS  Google Scholar 

  • Kobashi K, Akao T (1997) Relation of intestinal bacteria to pharmacological effect of glycosides. Biosci Microflora 16:1–7

    CAS  Google Scholar 

  • Kubo M, Kimura Y, Odani T, Tani T, Namba K (1981) Studies on Scutellariae radix. Part II: the antibacterial substance. Planta Med 43:194–201

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JG (1998) Pharmacology of irinotecan. Oncology 12:39–42

    PubMed  CAS  Google Scholar 

  • Lai MY, Hsiu SL, Tsai SY, Hou YC, Chao PD (2003) Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J Pharm Pharmacol 55:205–209. doi:10.1211/002235702522

    Article  PubMed  Google Scholar 

  • Liu JJ, Huang TS, Cheng WF, Lu FJ (2003) Baicalein and baicalin are potent inhibitors of angiogenesis: inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer 106:559–565. doi:10.1002/ijc.11267

    Article  PubMed  CAS  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Rémy-Martin A, Prost O, Nicollier M, Burnod J, Adessi GL (1983) Estrone sulfate concentrations in plasma of normal individuals, postmenopausal women with breast cancer, and men with cirrhosis. Clin Chem 29:86–89

    PubMed  Google Scholar 

  • Roy AB (1970) Enzymological aspects of steroid conjugation. In: Bernstein S, Soloman S (eds) Chemical and biological aspects of steroid conjunction. Springer, New York, pp 74–130

    Chapter  Google Scholar 

  • Russell WM, Klaenhammer TR (2001) Identification and cloning of gusA, encoding a new β-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 67:1253–1261. doi:10.1128/AEM.67.3.1253-1261.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sasaki K, Taura F, Shoyama Y, Morimoto S (2000) Molecular characterization of a novel β-glucuronidase from Scutellaria baicalensis Georgi. J Biol Chem 275:27466–27472. doi:10.1074/jbc.M004674200

    PubMed  CAS  Google Scholar 

  • Shen YC, Chiou WF, Chou YC, Chen CF (2003) Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J Pharmacol 465:171–181. doi:10.1016/S0014-2999(03)01378-5

    Google Scholar 

  • Simons AL, Renouf M, Hendrich S, Murphy PA (2005) Human gut microbial degradation of flavonoids: structure-function relationships. J Agric Food Chem 53:4258–4263. doi:10.1021/jf0500177

    Article  PubMed  CAS  Google Scholar 

  • St John FJ, González JM, Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584:4435–4441. doi:10.1016/j.febslet.2010.09.051

    Article  PubMed  CAS  Google Scholar 

  • Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 279:9777–9784. doi:10.1074/jbc.M312392200

    Article  PubMed  CAS  Google Scholar 

  • Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, Redinbo MR (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835. doi:10.1126/science.1191175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36:829–837. doi:10.1016/j.freeradbiomed.2004.01.002

    Article  PubMed  CAS  Google Scholar 

  • Wilson KJ, Hughes SG, Jefferson RA (1992) The Escherichia coli gus operon: induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In: Gallagher SR (ed) GUS protocols. Using the GUS gene as reporter of gene expression. Academic, San Diego, pp 7–22

    Google Scholar 

  • Xing J, Chen X, Zhong D (2005) Absorption and enterohepatic circulation of baicalin in rats. Life Sci 78:140–146. doi:10.1016/j.lfs.2005.04.072

    Article  PubMed  CAS  Google Scholar 

  • Yim JS, Kim YS, Moon SK, Cho KH, Bae HS, Kim JJ, Park EK, Kim DH (2004) Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol Pharm Bull 27:1580–1593. doi:10.1248/bpb.27.1580

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang Y, Chen J, Liang X (2005) Purification and characterization of baicalin-β-d-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge. Process Biochem 40:1911–1915. doi:10.1016/j.procbio.2004.07.003

    Article  CAS  Google Scholar 

  • Zhao Y, Li H, Gao Z, Gong Y, Xu H (2006) Effects of flavonoids extracted from Scutellaria baicalensis Georgi on hemin-nitrite-H2O2 induced liver injury. Eur J Pharmacol 536:192–199. doi:10.1016/j.ejphar.2006.02.045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ogawa.

Additional information

Haruko Sakurama and Shigenobu Kishino contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurama, H., Kishino, S., Uchibori, Y. et al. β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30. Appl Microbiol Biotechnol 98, 4021–4032 (2014). https://doi.org/10.1007/s00253-013-5325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5325-8

Keywords

Navigation