Skip to main content
Log in

The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amillet J-M, Buisson N, Labbe-Bois R (1995) Positive and negative elements involved in the differential regulation by heme and oxygen of the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces cerevisiae. Curr Genet 28(6):503–511

    Article  PubMed  CAS  Google Scholar 

  • Amillet J-M, Buisson N, Labbe-Bois R (1996) Characterization of an upstream activation sequence and two Rox1p-responsive sites controlling the induction of the yeast HEM13 gene by oxygen and heme deficiency. J Biol Chem 271(40):24425–24432

    Article  PubMed  CAS  Google Scholar 

  • Andersen HD, Jensen EB, Welinder KG (1992) A process for producing heme proteins. European Patent Application no. 0505311A2 PCT/DK1993/000094

  • Banerjee R, Zou CG (2005) Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433(1):144–156

    Article  PubMed  CAS  Google Scholar 

  • Bennet JW, Lasure LL (1991) More gene manipulations in fungi. Academic, San Diego

    Google Scholar 

  • Bonkovsky HL, Wood SG, Howell SK, Sinclair PR, Lincoln B, Healey JF, Sinclair JF (1986) High-performance liquid chromatographic separation and quantitation of tetrapyrroles from biological materials. Anal Biochem 155(1):56–64

    Article  PubMed  CAS  Google Scholar 

  • Bos CJ, Debets AJ, Swart K, Huybers A, Kobus G, Slakhorst SM (1988) Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14(5):437–443

    Article  PubMed  CAS  Google Scholar 

  • Camadro J-M, Labbe P (1996) Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem 271(15):9120–9128

    Article  PubMed  CAS  Google Scholar 

  • Chang PK, Ehrlich KC, Linz JE, Bhatnagar D, Cleveland TE, Bennett JW (1996) Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr Genet 30(1):68–75

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66(7):3016–3023

    Article  PubMed  CAS  Google Scholar 

  • Corrick CM, Twomey AP, Hynes MJ (1987) The nucleotide sequence of the amdS gene of Aspergillus nidulans and the molecular characterization of 5′ mutations. Gene 53(1):63–71

    Article  PubMed  CAS  Google Scholar 

  • Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30(4):590–595

    Article  PubMed  CAS  Google Scholar 

  • Dailey TA, Woodruff JH, Dailey HA (2005) Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem J 386(Pt 2):381–386

    PubMed  CAS  Google Scholar 

  • de Ruiter-Jacobs YM, Broekhuijsen M, Unkles SE, Campbell EI, Kinghorn JR, Contreras R, Pouwels PH, van den Hondel CA (1989) A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16(3):159–163

    Article  PubMed  Google Scholar 

  • Elrod SL, Cherry JR, Jones A (1997) A method for increasing hemoprotein production in filamentous fungi. International Patent Application WO 97/47746 PCT/US97/10003

  • Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S (2011) Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 91(3):447–460

    Article  PubMed  CAS  Google Scholar 

  • Franken ACW, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ (2012) Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. FEMS Microbiol Lett 335(2):104–112

    Article  PubMed  CAS  Google Scholar 

  • González-Domínguez M, Freire-Picos MA, Ramil E, Guiard B, Cerdán ME (2000) Heme-mediated transcriptional control in Kluyveromyces lactis. Curr Genet 38(4):171–177

    Article  PubMed  Google Scholar 

  • González-Domínguez M, Méndez-Carro C, Cerdán ME (1997) Isolation and characterization of the KlHEM1 gene in Kluyveromyces lactis. Yeast 13(10):961–971

    Article  PubMed  Google Scholar 

  • Guan Z, Chai X, Yu S, Hu H, Jiang Y, Meng Q, Wu Q (2010) Synthesis, molecular docking, and biological evaluation of novel triazole derivatives as antifungal agents. Chem Biol Drug Des 76(6):496–504

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355

    Article  PubMed  CAS  Google Scholar 

  • Hamza I (2006) Intracellular trafficking of porphyrins. ACS Chem Biol 1(10):627–629

    Article  PubMed  CAS  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8(3):244–262

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology 156(Pt 8):2393–2407

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • James MFM, Hift RJ (2000) Porphyrias. Br J Anaesth 85(1):143–153

    Article  PubMed  CAS  Google Scholar 

  • Keng T (1992) HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol 12(6):2616–2623

    PubMed  CAS  Google Scholar 

  • Kolar M, Punt PJ, van den Hondel CA, Schwab H (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Layer G, Reichelt J, Jahn D, Heinz DW (2010) Structure and function of enzymes in heme biosynthesis. Protein Sci 19(6):1137–1161

    Article  PubMed  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30(4):425–444

    Article  Google Scholar 

  • Meyer V, Ram AF, Punt PJ (2010) Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. In: Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology, 3rd edn. Wiley, New York, pp 318–329

    Google Scholar 

  • Moore MR (2009) An historical introduction to porphyrin and chlorophyll synthesis. In: Warren MJ, Smith AG, Moore MR (eds) Tetrapyrroles, their birth, life and death. Molecular Biology Intelligence Unit. Springer, New York, pp 1–28

    Google Scholar 

  • Pérez-Boada M, Doyle WA, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT, Smith AT (2002) Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb Technol 30(4):518–524

    Article  Google Scholar 

  • Polo CF, Frisardi AL, Resnik ER, Schoua AE, del C Batlle AM (1988) Factors influencing fluorescence spectra of free porphyrins. Clin Chem 34(4):757–760

    PubMed  CAS  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel CAMJJ (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206

    Article  PubMed  CAS  Google Scholar 

  • Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ (2003) Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 370(Pt 2):505–516

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch ET, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 3, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H (2008) SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 70(1):27–43

    Article  PubMed  CAS  Google Scholar 

  • Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ (2002) The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J 21(9):2068–2075

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley RN, Burke JF (1990) Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem 265(22):13335–13343

    PubMed  CAS  Google Scholar 

  • Susa S, Daimon M, Ono H, Li S, Yoshida T, Kato T (2002) Heme inhibits the mitochondrial import of coproporphyrinogen oxidase. Blood 100(13):4678–4679

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Sherameti I, Oelmüller R (2010) Siroheme: an essential component for life on earth. Plant Sign Behav 5(1):14–20

    Article  CAS  Google Scholar 

  • van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CA (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206(1):71–75

    Article  PubMed  Google Scholar 

  • Vasconcelles MJ, Jiang Y, McDaid K, Gilooly L, Wretzel S, Porter DL, Martin CE, Goldberg MA (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem 276(17):14374–14384

    PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194

    Article  PubMed  CAS  Google Scholar 

  • Wilks A (2002) Analysis of heme and hemoproteins. In: Smith AG, Witty M (eds) Heme, chlorophyll, and bilins. Humana, Totowa, pp 157–184

    Google Scholar 

Download references

Acknowledgments

The authors thank Ellen Lagendijk, Nina Madl, Petra Höfler, Sanne Westhoff, and Janneke Teunissen for technical assistance. This work is funded by the Sixth Framework Program (FP6-2004-NMP-NI-4): “White Biotechnology for added value products from renewable plant polymers: Design of tailor-made biocatalysts and new Industrial bioprocesses” (Biorenew), contract no.: 026456, and by the Austrian Science Fund (FWF): P22406-B18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Punt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franken, A.C.W., Werner, E.R., Haas, H. et al. The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger . Appl Microbiol Biotechnol 97, 9773–9785 (2013). https://doi.org/10.1007/s00253-013-5274-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5274-2

Keywords

Navigation