Skip to main content
Log in

Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The trend to confer new functional properties to fermented dairy products by supplementation with bioactive peptides is growing in order to encounter the challenge of health-promoting foods. But these functional ingredients have not to be hydrolysed by proteases of bacteria used in the manufacture of these products. One of the two yoghurt bacteria, Streptococcus thermophilus, has long been considered as weakly proteolytic since its only cell wall-associated subtilisin-like protease, called PrtS, is not always present. Nevertheless, a recent study pointed out a possible peptidase activity in certain strains. In this present study, the stability of milk-derived bioactive peptides, e.g. the anxiolytic peptide, αs1-CN-(f91-97), in the presence of two different S. thermophilus strains with PrtS+ or PrtS phenotype was studied. Both strains appeared to be capable of hydrolysing the αs1-CN-(f91-97) and other bioactive peptides by recurrent removal of N-terminal residues. The hydrolysis was neither due to intracellular peptidases nor to HtrA protease. Results obtained showed that the observed activity originates from the presence at the surface of both strains of an extracellular aminopeptidase activity. Moreover, a cell wall-associated X-prolyl dipeptidyl peptidase activity was also highlighted when β-casomorphin-7 was used as substrate. All of these findings suggest that, in order to use fermented milks as vector of bioactive peptides, the stability of these bioactive peptides in this kind of products implies to carefully characterize the potential action of the surface proteolytic enzymes of S. thermophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhat ZF, Bhat H (2011) Milk and dairy products as functional foods: a review. Int J Dairy Sci 6:1–12

    Article  Google Scholar 

  • Blanc B, Laloi P, Atlan D, Gilbert C, Portalier R (1993) Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. J Gen Microbiol 139:1441–1448

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist T, Steinmoen H, Havarstein LS (2006) Natural genetic transformation: a novel tool for efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl Environ Microbiol 72:6751–6756

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Mausy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  PubMed  CAS  Google Scholar 

  • Brantl V, Teschemacher H, Henschen A, Lottspeich F (1979) Novel opioid peptides derived from casein (β-casomorphins). I. Isolation from bovine casein peptone. H-S Z Physiol Chem 360:1211–1216

    Article  CAS  Google Scholar 

  • Cakir-Kiefer C, Le Roux Y, Balandras F, Trabalon F, Dary A, Laurent F, Gaillard JL, Miclo L (2011) In vitro digestibility of α-casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment. J Agric Food Chem 59:4464–4472

    Article  PubMed  CAS  Google Scholar 

  • Chang O, Perrin C, Galia W, Saulnier F, Miclo L, Roux E, Driou A, Humbert G, Dary A (2012) Release of the cell-envelope protease PrtS in the growth medium of Streptococcus thermophilus 4F44. Int Dairy J 23:91–98

    Article  CAS  Google Scholar 

  • Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217–246

    Article  PubMed  CAS  Google Scholar 

  • Courtin P, Monnet V, Rul F (2002) Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 148:3413–3421

    PubMed  CAS  Google Scholar 

  • Cowman RA, Baron SS (1991) Studies on the subcellular localization of protease and aryl aminopeptidase activities in Streptococcus sanguis ATCC 10556. J Dent Res 70:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Dandoy D, Fremaux C, Henry de Frahan M, Horvath P, Boyaval P, Hols P, Fontaine L (2011) The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microb Cell Fact 10:S21

    Article  PubMed  Google Scholar 

  • Day L, Seymoura RB, Pitts KF, Konczak I, Lundin L (2009) Incorporation of functional ingredients into foods. Trends Food Sci Tech 20:388–395

    Article  CAS  Google Scholar 

  • Deutsch SM, Molle D, Gagnaire V, Piot M, Atlan D, Lortal S (2000) Hydrolysis of sequenced β-casein peptides provides new insight into peptidase activity from thermophilic lactic acid bacteria and highlights intrinsic resistance of phosphopeptides. Appl Environ Microbiol 66:5360–5367

    Article  PubMed  CAS  Google Scholar 

  • Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P (2010) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76:451–460

    Article  PubMed  CAS  Google Scholar 

  • Eggimann B, Bachmann M (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl Environ Microbiol 40:876–882

    PubMed  CAS  Google Scholar 

  • Fernandez-Espla MD, Garault P, Monnet V, Rul F (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Decaris B, Leblond P (1997) Occurrence of deletions, associated with genetic instability in Streptomyces ambofaciens, is independent of the linearity of the chromosomal DNA. J Bacteriol 179:4553–4558

    PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, Murray BA (2006) Bioactive peptides and lactic fermentations. Int J Dairy Technol 59:118–125

    Article  CAS  Google Scholar 

  • Fontaine L, Dandoy D, Boutry C, Delplace B, de Frahan MH, Fremaux C, Horvath P, Boyaval P, Hols P (2010) Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in Streptococcus thermophilus. Appl Environ Microbiol 76:7870–7877

    Article  PubMed  CAS  Google Scholar 

  • Galia W, Perrin C, Genay M, Dary A (2009) Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. Int Dairy J 19:89–95

    Article  CAS  Google Scholar 

  • Gardan R, Besset C, Guillot A, Gitton C, Monnet V (2009) The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J Bacteriol 191:4647–4655

    Article  PubMed  CAS  Google Scholar 

  • Garault P, Le Bars D, Besset C, Monnet V (2002) Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J Biol Chem 277:32–39

    Article  PubMed  CAS  Google Scholar 

  • Geis A, Bockelmann W, Teuber M (1985) Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris AC1. Appl Microbiol Biotechnol 23:79–84

    Article  CAS  Google Scholar 

  • Girardet J-M, Miclo L, Florent S, Mollé D, Gaillard J-L (2006) Determination of the phosphorylation level and deamidation susceptibility of equine β-casein. Proteomics 6:3707–3717

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JM, Nelson D, Kordula T, Mayo JA, Travis J (2002) Extracellular arginine aminopeptidase from Streptococcus gordonii FSS2. Infect Immun 70:836–843

    Article  PubMed  CAS  Google Scholar 

  • Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    PubMed  CAS  Google Scholar 

  • Jobin MC, Grenier D (2003) Identification and characterization of four proteases produced by Streptococcus suis. FEMS Microbiol Lett 220:113–119

    Article  PubMed  CAS  Google Scholar 

  • Kiefer-Partsch B, Bockelmann W, Geis A, Teuber M (1989) Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris. Appl Microbiol Biotechnol 31:75–78

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  PubMed  CAS  Google Scholar 

  • Letort C, Juillard V (2001) Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J Appl Microbiol 91:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11:36

    Article  PubMed  Google Scholar 

  • Loukas S, Varoucha D, Zioudrou C, Streaty RA, Klee WA (1983) Opioid activities and structures of α-casein-derived exorphins. Biochemistry 22:4567–4573

    Article  PubMed  CAS  Google Scholar 

  • Magboul AAA, McSweeney PLH (1999) PepN-like aminopeptidase from Lactobacillus curvatus DPC2024: purification and characterization. Lait 79:515–526

    Article  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616

    Article  PubMed  Google Scholar 

  • Meyer J, Jordi R (1987) Purification and characterization of X-prolyl-dipeptidyl aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J Dairy Sci 70:738–745

    Article  PubMed  CAS  Google Scholar 

  • Miclo L, Perrin E, Driou A, Papadopoulos V, Boujrad N, Vanderesse R, Boudier JF, Desor D, Linden G, Gaillard JL (2001) Characterization of alpha casozepine, a tryptic peptide from bovine αs1-casein with benzodiazepine-like activity. FASEB J 15:1780–1782

    PubMed  CAS  Google Scholar 

  • Miclo L, Roux E, Genay M, Brusseaux-Lorson E, Poirson C, Jameh N, Perrin C, Dary A (2012) Variability of hydrolysis of β-, αs1- and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J Agric Food Chem 60:554–565

    Article  PubMed  CAS  Google Scholar 

  • Midwinter RG, Pritchard GG (1994) Aminopeptidase N from Streptococcus salivarius subsp. thermophilus NCDO 573: purification and properties. J Appl Microbiol 77:288–295

    Article  CAS  Google Scholar 

  • Migliore-Samour D, Jollès P (1988) Casein, a prohormone with an immunomodulating role for the newborn? Experientia 44:188–193

    Article  PubMed  CAS  Google Scholar 

  • Mills OE, Thomas TD (1981) Nitrogen sources for growth of lactic streptococci in milk. N Z J Dairy Sci 15:43–55

    Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin-I-converting enzyme inhibitors from sour milk. J Dairy Sci 78:777–783

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Somkuti GA (2009) Degradation of milk-based bioactive peptides by yogurt fermentation bacteria. Lett Appl Microbiol 49:345–350

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Somkuti GA (2010) Hydrolytic breakdown of lactoferricin by lactic acid bacteria. J Ind Microbiol Biotechnol 37:173–178

    Article  PubMed  CAS  Google Scholar 

  • Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB (2008) Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol 74:4703–4710

    Article  PubMed  CAS  Google Scholar 

  • Rul F, Monnet V, Gripon J-C (1994) Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius ssp. thermophilus CNRZ 302. J Dairy Sci 77:2880–2889

    Article  PubMed  CAS  Google Scholar 

  • Rul F, Monnet V (1997) Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis. J Appl Microbiol 82:695–704

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  PubMed  CAS  Google Scholar 

  • Shahbal S, Hemme D, Renault P (1993) Characterization of a cell envelope-associated proteinase activity from Streptococcus thermophilus H-strains. Appl Environ Microbiol 59:177–182

    PubMed  CAS  Google Scholar 

  • Shihata A, Shah NP (2000) Proteolytic profiles of yogurt and probiotic bacteria. Int Dairy J 10:401–408

    Article  CAS  Google Scholar 

  • Somkuti GA, Paul M (2010) Enzymatic fragmentation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. Appl Microbiol Biotechnol 87:235–242

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu D, Osaki M, Sekizaki T (2001) Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid 46:140–148

    Article  PubMed  CAS  Google Scholar 

  • Tauzin J, Miclo L, Gaillard JL (2002) Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αs2-casein. FEBS Lett 531:369–374

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813

    PubMed  CAS  Google Scholar 

  • Tsakalidou E, Kalantzopoulos G (1992) Purification and partial characterization of an intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114. J Appl Bacteriol 72:227–232

    Article  PubMed  CAS  Google Scholar 

  • Tsakalidou E, Anastasiou R, Papadimitriou K, Manolopoulou E, Kalantzopoulos G (1998) Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. J Biotechnol 59:203–211

    Article  CAS  Google Scholar 

  • Wittenberger CL, Angelo N (1970) Purification and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase. J Bacteriol 10:717–724

    Google Scholar 

Download references

Acknowledgments

Zeeshan Hafeez is highly thankful to the Higher Education Commission (HEC) of Pakistan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Miclo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafeez, Z., Cakir-Kiefer, C., Girardet, JM. et al. Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus . Appl Microbiol Biotechnol 97, 9787–9799 (2013). https://doi.org/10.1007/s00253-013-5245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5245-7

Keywords

Navigation