Skip to main content
Log in

Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial lipoproteins are a specialised class of membrane proteins that represent a small percentage of the proteome of Gram-positive bacteria, yet these lipoproteins have been reported to play important roles in nutrient scavenging, cell envelope assembly, protein folding, environmental signalling, host cell adhesion and virulence. Upon translocation of lipoproteins, the type II signal peptidase (Lsp) cleaves the signal peptide, leaving the lipoproteins bound to the outer face of the cytoplasmic membrane by means of linking lipid molecule to their +1 cysteine residue. We have studied the role played by Lsp in Streptomyces lividans cellular metabolism, particularly, in secretory protein production, and found that the absence of functional Lsp, apparently produces a translocase blockage, diminishes the synthesis of secretory proteins and triggers a stringent response. These findings could be particularly relevant when optimising S. lividans for the overproduction of secretory proteins of industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anné J, Van Mellaert L (1993) Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 114:121–128

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300

    Google Scholar 

  • Berks BC, Sargent F, De Leeuw E, Hinsley AP, Stanley NR, Jack RL, Buchanan G, Palmer T (2000) A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochim Biophys Acta 1459:325–330

    Article  PubMed  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases alpha and beta. In: Colowick SP, Kaplan ON (eds) Methods in enzymology. Academia Press, New Cork, pp 140–146

    Google Scholar 

  • Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F (2004) In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186:1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Binnie C, Cossar JD, Stewart DIH (1997) Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15:315–320

    Article  PubMed  CAS  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  PubMed  CAS  Google Scholar 

  • Escutia MR, Val G, Palacín A, Geukens AJ, Mellado RP (2006) Compensatory effect of the minor Streptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 6:4137–4146

    Article  PubMed  CAS  Google Scholar 

  • Gilbert M, Morosoli R, Shareck F, Kluepfel D (1995) Production and secretion of proteins by Streptomycetes. Cri Rev Biotechnol 15:13–39

    Article  CAS  Google Scholar 

  • Gordon ND, Ottaviano GL, Connell SE, Tobkin GV, Son CH, Shterental S, Gehring AM (2008) Secreted-protein response to σU activity in Streptomyces coelicolor. J Bacteriol 190:894–904

    Article  PubMed  CAS  Google Scholar 

  • Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674

    Article  PubMed  CAS  Google Scholar 

  • Gullón S, Palomino C, Navajas R, Paradela A, Mellado RP (2012a) Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans. J Biotechnol 160:112–122

    Article  PubMed  Google Scholar 

  • Gullón S, Vicente LR, Mellado RP (2012b) A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS One 7(11):e48987. doi:10.1371/journal.pone.0048987

    Article  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterne soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  PubMed  CAS  Google Scholar 

  • Hesketh A, Chen JW, Ryding J, Chang S, Bibb M (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161.1–R161.18

    Article  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF (1985) Genetic manipulation of Streptomyces. A laboratory manual. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Hutchings MI, Hong H-J, Leibovitz E, Sutcliffe IC, Buttner MJ (2006) The σE cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. Mol Microbiol 188:7222–7229

    CAS  Google Scholar 

  • Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC (2009) Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when to fold ’em. Trends Microbiol 17:13–21

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Kontinen VP, Sarvas M (1993) The PsrA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lammertyn E, Van Mellaert L, Schacht S, Dillen C, Sablon A, Van Broekhoven A, Anné J (1997) Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol 63:1808–1813

    PubMed  CAS  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Costa OH, Arias P, Romero NM, Parro V, Mellado RP, Malpartida F (1996) A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthtic genes. J Biol Chem 271:10627–10634

    Article  PubMed  CAS  Google Scholar 

  • Pahl A, Keller U (1994) Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12 gene. EMBO J 13:3472–3480

    PubMed  CAS  Google Scholar 

  • Palacín A, de la Fuente R, Valle I, Rivas LA and Mellado RP (2003) Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. Microbiology 149: 2435–2442

    Google Scholar 

  • Palomino C, Mellado RP (2008) Influence of a Streptomyces lividans SecG functional analogue on protein secretion. Int Microbiol 11:25–31

    PubMed  CAS  Google Scholar 

  • Parro V, Mellado RP (1994) Effect of glucose on agarase overproduction by Streptomyces. Gene 145:49–55

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Haroun RI, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    Article  PubMed  CAS  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  PubMed  CAS  Google Scholar 

  • Robichon C, Vidal-Ingigliardi D, Pugsley AP (2005) Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 280:974–983

    Article  PubMed  CAS  Google Scholar 

  • Rozas D, Gullón S, Mellado RP (2012) A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS ONE 7(2):e31760. doi:10.1371/journal.pone.0031760

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nature protocols 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3. Available from http://www.bepress.com/sagm/vol3/iss1/art3

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  • Strumeyer DH (1967) A modified starch for use in amylase assays. Anal Biochem 19:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Hesketh A, Bibb MJ (2001) Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol 183:3488–3498

    Article  PubMed  CAS  Google Scholar 

  • Thompson CJ, Kieser T, Ward JM, Hopwood DA (1982) Physical analysis of antibiotic-resistant genes from Streptomyces and their use in vector construction. Gene 20:51–62

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Widdick DA, Hicks MG, Chandra G, Sutcliffe IC, Palmer T, Hutchings MI (2010) Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor. Mol Microbiol 77:943–957

    Article  CAS  Google Scholar 

  • Timmons TM, Dunbar BS (1990) Protein blotting and immunodetection. Methods Enzymol 182:679–688

    Article  PubMed  CAS  Google Scholar 

  • Tokuda H (2009) Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73:465–473

    Article  PubMed  CAS  Google Scholar 

  • Valente FM, Pereira PM, Venceslau SS, Regalla M, Coelho AV, Pereira IA (2007) The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide. FEBS Lett 581:3341–3344

    Article  PubMed  CAS  Google Scholar 

  • Van Mellaert L, Anné J (1994) Protein secretion in Gram-positive bacteria with high GC-content. Recent Res Dev Microbiol 3:324–340

    Google Scholar 

  • Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP (2004) Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem 279:19302–19314

    Article  PubMed  CAS  Google Scholar 

  • Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G, Sutcliffe IC, Bruelle JK, Sander P, Palmer T, Hutchings MI (2011) Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Mol Microbiol 80:1395–1412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Spanish Ministry of the Environment and Rural and Marine affairs has commissioned and supported this research (grant no. EGO22008). We wish to thank S. Marín for her technical help and C. Palomino for her contribution in obtaining S. lividans Δlsp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael P. Mellado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.98 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gullón, S., Arranz, E.I.G. & Mellado, R.P. Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans . Appl Microbiol Biotechnol 97, 10069–10080 (2013). https://doi.org/10.1007/s00253-013-5219-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5219-9

Keywords

Navigation