Skip to main content

Advertisement

Log in

Thermophilic biological nitrogen removal in industrial wastewater treatment

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification–two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amman RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association, Washington, DC

    Google Scholar 

  • Avrahami S, Jia Z, Neufeld JD, Murrel JC, Conrad R, Küsel K (2011) Active autotrophic ammnonia-oxidizing bacteria in biofilm enrichments from simulated creek ecosystems at two ammonium concentrations respond to temperature manipulation. Appl Environ Microbiol 77(20):7329–7338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barlindhaug J, Ødegaard H (1996) Thermal hydrolysis for the production of carbon source for denitrification. Wat Sci Tech 34(1–2): 371–378

    Google Scholar 

  • Barrit NW (1933) The nitrification process in soils and biological filters. Ann Appl Biol. doi:10.1111/j.1744-7348.1933.tb07433

    Google Scholar 

  • Berge ND, Reinhart DR, Dietz JD, Townsend T (2007) The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate. Water Res 41:1907–1914

    Article  CAS  PubMed  Google Scholar 

  • Buswell AM, Shiota T, Lawrence N, van Meter J (1954) Laboratory studies on the kinetics of the growth of Nitrosomonas with relation to the nitrification phase of the B.O.D. test. J Gral Microbiol 54:1–14

    Google Scholar 

  • Carrera J, Vicent T, Lafuente FJ (2003) Influence of temperature on denitrification of an industrial high-strength nitrogen wastewater in a two-sludge system. Water SA 29(1):11–16

    CAS  Google Scholar 

  • Chikamba (2009) Nitrogen removal at high temperatures: industrial applications. MSc thesis, UNESCO-IHE, Delft, The Netherlands

  • Choi E, Eum Y (2002) Strategy for nitrogen removal from piggery waste. Water Sci Tech 46(6–7):347–354

    CAS  Google Scholar 

  • Christensson M, Lie E, Welander T (1994) A comparison between ethanol and methanol as carbon sources for denitrification. Water Sci Technol 30(6):83–90

    CAS  Google Scholar 

  • Daims H, Bruh A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Nielsen P, Nielsen JL, Juretschko S, Wagner M (2000) Novel Nitrospira-like bacteria as dominant nitrite oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci Technol 41:85–90

    CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De la Torre J, Walker CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10(3):810–818

    Article  PubMed  Google Scholar 

  • Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilch S (2009) Molecular and physiological characterization of the energy of Nitrosomonas europaea (in German). Ph.D. dissertation, University of Bayreuth, Germany. http://opus.ub.uni-bayreuth.de/volltexte/2010/668/

  • Guo JH, Peng YZ, Huang HJ, Wang SY, Ge SJ, Zhang JR, Wang ZW (2010) Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. J Hazard Mater 179:471–479

    Article  CAS  PubMed  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37:135–142

    Article  CAS  Google Scholar 

  • Hellinga C, van Loosdrecht MCM, Heijnen JJ (1999) Model-based design of a novel process for nitrogen removal from concentrated flows. Math Comput Model Dyn Syst 5(4):351–371

    Article  Google Scholar 

  • Henze M, Gujer W, Mino T, van Loosdrecht MCM (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No. 9. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment. IWA Publishing, London

  • Henze M, Harremoes P, Jansen JLC, Arvin E (1995) Wastewater treatment: biological and chemical processes. Springer, Berlin

    Google Scholar 

  • Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles, modeling and design. IWA Publishing, London

    Google Scholar 

  • Hiorns WD, Hastings RC, Head IM, McCarthy AJ, Saunders JR, Pickup RW, Hall GH (1996) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiololgy 141:2793–2800

    Google Scholar 

  • Iacopozzi I, Innocenti V, Marsili-Libelli S, Giusti E (2007) A modified activated sludge model No. 3 (ASM3) with two-step nitrification–denitrification. Environ Model Softw 22:847–861

    Article  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998) Conbined molecular and conventional analyses of nitrifying bacterium in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kartal B, Kuenen JG, van Loosdrecht MCM (2010) Sewage treatment with Anammox. Science 38:702–703

    Article  Google Scholar 

  • Kim J-H, Guo X, Park H-S (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem 43:154–160

    Article  CAS  Google Scholar 

  • Laudelout H, van Tichelen L (1960) Kinetics of the nitrite oxidation by Nitrobacter winogradskyi. J Bacteriol 79:39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebedeva EV, Off S, Zumbragel S, Kruse M, Shagzhina A, Lucker S, Maixner F, Lipski A, Daims H, Spieck E (2011) Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol 75:195–204

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vazquez CM, Song YI, Hooijmans CM, Brdjanovic D, Moussa MS, Gijzen HJ, van Loosdrecht MCM (2007) Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Biotech Bioeng 97(3):483–495

    Article  CAS  Google Scholar 

  • Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MCM (2009) Temperature effects on glycogen accumulating organisms. Water Res 43(11):2852–2864

    Article  CAS  PubMed  Google Scholar 

  • Lucker S, Nowka B, Rattei T, Spieck E, Daims H (2013) The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Maeda K, Morioka R, Hanajima D, Osada T (2010) The impact of using mature compost on nitrous oxide emission and the denitrifier community in the cattle manure composting process. Microb Ecol 59:25–36

    Article  PubMed  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moussa MS, Lubberding HJ, Hooijmans CM, Van Loosdrecht MCM, Gijzen HJ (2003) Improved method for determination of ammonia and nitrite oxidation activities in mixed cultures. Appl Microbiol Biotechnol 63:217–221

    Article  CAS  PubMed  Google Scholar 

  • Moussa MS, Rojas AR, Hooijmans CM, Gijzen HJ, van Loosdrecht MCM (2004) Model-based evaluation of nitrogen removal in a tannery wastewater treatment plant. Water Sci Technol 50:251–260

    CAS  PubMed  Google Scholar 

  • Mulder JW, van Loosdrecht MCM, Hellinga C, van Kempen R (2001) Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 43(11):127–134

    CAS  PubMed  Google Scholar 

  • Nowak O, Svardal K, Schweighofer P (1995) The dynamic behaviour of nitrifying sludge systems influenced by inhibiting wastewater compounds. Water Sci Technol 31(2):115–124

    Article  CAS  Google Scholar 

  • Nyberg U, Aspegren H, Andersson B, Janssen JC, Villadsen IS (1992) Full-scale application of nitrogen removal with methanol as carbon source. Water Sci Technol 26(5–6):1077–1086

    CAS  Google Scholar 

  • Oleszkiewicz JA, Berquist SA (1988) Low temperature nitrogen removal in sequencing discontinuos reactors. Water Res 22(9):1163–1171

    Article  CAS  Google Scholar 

  • Pinzon-Pardo AL, Brdjanovic D, Moussa MS, Lopez-Vazquez CM, Meijer SCF, Van Straten HHA, Janssen AJH, Amy G, van Loosdrecht MCM (2007) Application of ASM3 to an oil refinery wastewater treatment plant. Environ Technol 28:1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Purtschert I, Gujer W (1999) Population dynamics by methanol addition in denitrifying wastewater treatment plants. Water Sci Technol 39(1):43–50

    Article  CAS  Google Scholar 

  • Purtschert I, Siegrist H, Gujer W (1996) Enhanced denitrification with methanol at WWTP Zürich-Werdhölzli. Water Sci Technol 33(12):117–126

    Article  CAS  Google Scholar 

  • Salem S, Berends DHJG, van Loosdrecht MCM, Heijnen J (2002) Model-based evaluation of a new upgrading concept for nitrogen removal. Water Sci Technol 45(6):169–176

    CAS  PubMed  Google Scholar 

  • Shimaya, Hashimoto (2011) Isolation and characterization of novel thermophilic nitrifying Bacillus sp. from compost. Soil Sci Plant Nutr 57(1):150–156

    Article  Google Scholar 

  • Shore JL, McCoy WS, Gunsch CK, Deshusses MA (2012) Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresour Technol 112:51–60

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Sinninghe Damste JS, Le Paslier D, Muyzer G, Wagner M, Loosdrecht MCM, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256

    Article  CAS  PubMed  Google Scholar 

  • Stark JM (1996) Modeling the temperature response of nitrification. Biogeochemistry 35:433–445

    Article  Google Scholar 

  • Sudarno U, Winter J, Gallert C (2011) Effect of varying salinity, temperature, ammonia and nitrous acid concentrations on nitrification of saline wastewater in fixed-bed reactors. Bioresour Technol 102(10):5665–5673

    Article  CAS  PubMed  Google Scholar 

  • Timmermans P, van Haute A (1983) Denitrification with methanol. Fundamental work of the growth and denitrification capacity of Hyphomicrobium sp. Water Res 17(10):1249–1255

    Article  CAS  Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing Archaea and Bacteria in soil microcosms. Environ Microbiol 10(5):1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Rath G, Amann R, Koops HP, Schleifer KH (1995) In-situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    Article  CAS  Google Scholar 

  • Wagner M, Rath G, Koops HP, Flood J, Amann R (1996) In-situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34:237–244

    Article  CAS  Google Scholar 

  • Wett B, Jimenez JA, Takacs I, Murthy S, Bratby JR, Holm NC, Ronner-Holm SGE (2011) Models for nitrification process design: one or two AOB populations? Water Sci Technol 66:568–578

    Article  Google Scholar 

  • Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing Archaea during cattle manure composting. Environ Microbiol 60:807–815

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the cooperation from various WWTP managers and practitioners during the collection of activated sludge samples to perform the laboratory activity tests. M. Kubare and C. Chikamba want to thank the Netherlands organization for international cooperation in higher education (Nuffic) for the financial support to undertake their M.Sc. studies at UNESCO-IHE Institute for Water Education. The valuable help provided by Markus Schmid with the confocal laser scanning microscopy of the probe-labeled Nitrospira is highly appreciated. Also, the authors would like to thank Dimitry Sorokin, from Delft University of Technology, for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Lopez-Vazquez.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Vazquez, C.M., Kubare, M., Saroj, D.P. et al. Thermophilic biological nitrogen removal in industrial wastewater treatment. Appl Microbiol Biotechnol 98, 945–956 (2014). https://doi.org/10.1007/s00253-013-4950-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4950-6

Keywords

Navigation