Skip to main content
Log in

Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tributyl phosphate (TBP) has enormous applications in the field of extraction, fuel reprocessing, as defoamers and/or plasticizers. Excessive usage of this organophosphorus compound, poses an environmental threat. The present study deals with microbial degradation of TBP using Klebsiella pneumoniae S3 isolated from the soil. Diauxic growth curve pattern explains a preferential utilization of TBP. The strain S3 was able to biotransform TBP (1,000 mg L−1) to dibutyl phosphate within 48 h and showed higher tolerance towards TBP up to 17.0 g L−1. Toxicity of the parent as well as degraded product was assessed using comet assay. Generation of reactive oxygen species elaborates the oxidative stress imposed upon the bacterial strain by TBP. The antioxidant defense mechanism was studied using various biomarkers namely catalase, glutathione-S-transferase, and superoxide dismutase. The present study describes a faster and eco-friendly alternative for disposal of TBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahire K, Kapadnis BP, Kulkarni GJ, Shouche YS, Deopurkar RL (2011) Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures. Biodegradation 23:165–176

    Article  PubMed  Google Scholar 

  • Allocati N, Federici L, Masulli M, Ilio CD (2008) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  Google Scholar 

  • Arnold LL, Christenson MC, John MK, Wahale BS, Cohen SM (1997) Tributyl phosphate effects on urine and bladder epithelium in male Sprague–Dawley rats. Fundam Appl Toxicol 40:247–255

    Article  CAS  PubMed  Google Scholar 

  • Auletta CS, Weiner M, Richter WR (1998a) A dietary toxicity oncogenicity study of tributyl phosphate in the rat. Toxicology 128:125–134

    Article  CAS  PubMed  Google Scholar 

  • Auletta CS, Weiner M, Richter WR (1998b) A dietary oncogenicity study of tributyl phosphate in the CD-1 mouse. Toxicology 128:135–141

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Apte SK, Phale P (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72:2226–2230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berne C, Montjarret B, Guountti Y, Garcia D (2004) Tributyl phosphate degradation by Serratia odorifera. Biotechnol Lett 26:681–686

    Article  CAS  PubMed  Google Scholar 

  • Berne C, Pignol D, Lavergne J, Garcia D (2007) CYP201A2, a cytochrome P450 from Rhodopseudomonas palustris, plays a key role in the biodegradation of tributyl phosphate. Appl Microbiol Biotechnol 77:135–144

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye- binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AU, Kodam KM (2010) Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl Microbiol Biotechnol 85:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari TD, Eapen S, Fulekar MH (2009) Characterization of industrial waste and identification of potential microorganism degrading tributyl phosphate. J Toxicol Environ Health Sci 1:1–7

    CAS  Google Scholar 

  • Chaudhari TD, Melo JS, Fulekar MH, D’Souza SF (2012) Tributyl phosphate degradation in batch and continuous processes using Pseudomonas pseudoalcaligenes MHF ENV. Int Biodeter Biodegr 74:87–92

    Article  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, Li Y, Lu S, Peng H, Ge J, Chen S (2006) Treatment of organophosphate-contaminated wastewater by acidic hydrolysis and precipitation. J Hazard Mater 129:234–238

    Article  CAS  PubMed  Google Scholar 

  • Kabler P (1959) Removal of pathogens by sewage treatment processes. Sewage Ind Wastes 31:1373–1382

    Google Scholar 

  • Koch AL (2005) Bacterial choices for the consumption of multiple resources for current and future needs. Microb Ecol 49:183–197

    Article  CAS  PubMed  Google Scholar 

  • Kovarova-Kovar K, Elgi T (1998) Growth kinetics of suspended microbial cells: from single substrate controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunde L (2009) Joint acute toxicity of tributyl phosphate and triphenyl phosphate to Daphnia magna. Environ Chem Lett 7:309–312

    Article  Google Scholar 

  • Kwon G, Kim JE, Kim TK, Sohn HY, Koh SC, Shin KS, Kim DG (2002) Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulphate. FEMS Microbiol Lett 215:255–259

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112

    Article  CAS  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular responses to oxidative stress: signalling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Martins PF, Carvalho G, Gratao PL, Dourado MN, Pileggi M, Araujo WL, Azevedo RA (2011) Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria. Process Biochem 46:1186–1195

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Moussa D, Brisset J (2003) Disposal of spent tributyl phosphate by gliding arc plasma. J Hazard Mater 102:189–200

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A (1991) Tri-n-butyl phosphate. Monograph of International Program on Chemical Safety, Environmental Health Criteria 112

  • Neerathilingam M, Volk DE, Sarkar S, Alam TM, Alam MK, Ansari GAS, Luxon BA (2010) 1H NMR-based metabonomic investigation of tributyl phosphate exposure in rats. Toxicol Lett 199:10–16

    Article  CAS  PubMed  Google Scholar 

  • Owen S, Jeong BC, Poole PS, Macaskie LE (1992) Tributyl phosphate degradation by immobilized cells of a Citrobacter sp. Appl Biochem Biotechnol 34–35:693–707

    Article  Google Scholar 

  • Ravindran C, Naveenan T (2011) Adaptation of marine derived fungus Chaetomium globosum NIOCC 36 to alkaline stress using antioxidant properties. Process Biochem 46:847–857

    Article  CAS  Google Scholar 

  • Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salovsky P, Shopova V, Dancheva V (1998) Antioxidant defense mechanism in lung toxicity of tri-n-butyl phosphate. Am J Ind Med 33:11–15

    Article  CAS  PubMed  Google Scholar 

  • Sharrer MJ, Summerfelt ST (2007) Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquacult Eng 37:180–191

    Article  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider LL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Thomas RAP, Macaskie LE (1996) Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of Uranium from aqueous solution. Environ Sci Technol 30:2371–2375

    Article  CAS  Google Scholar 

  • Thomas RAP, Macaskie LE (1998) The growth conditions on the biodegradation of tributyl phosphate and potential for the remediation of acid mine drainage waters by a naturally-occurring mixed microbial culture. Appl Microbiol Biotechnol 49:202–209

    Article  CAS  PubMed  Google Scholar 

  • Thomas RAP, Greated A, Lawlor K, Bailey M, Macaskie LE (1997) Stabilization of tributyl phosphate biodegradative ability of naturally occurring pseudomonads using ampicillin. Biotechnol Tech 12:781–785

    Article  Google Scholar 

  • USEPA (1992) Chemical information collection and data development tributyl phosphate test results.

  • Wang H, Joseph J (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  • Watts MJ, Linden KG (2008) Photo oxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water. Water Res 42:4949–4954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Chai N, Dong M, Jiang H, Li J, Quio C, Mulachandani A, Chen W (2008) Surface display of MPH on Psuedomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol Bioeng 99:30–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author SVK would like to thank Bhabha Atomic Research Centre, Mumbai and University of Pune, Pune (BARC-UoP) collaborative program for providing financial support. The author VLM wishes to thank University Grants Commission (UGC), New Delhi, India for the research fellowship. The authors wish to thank the Sophisticated Analytical Instrumentation Facility (SAIF), IIT, Mumbai, India for providing the GC-HRMS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Kodam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S.V., Markad, V.L., Melo, J.S. et al. Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3. Appl Microbiol Biotechnol 98, 919–929 (2014). https://doi.org/10.1007/s00253-013-4938-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4938-2

Keywords

Navigation