Skip to main content

Advertisement

Log in

Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria inhabit nearly every ecosystem on earth, play a vital role in nutrient cycling, and are useful as model organisms for fundamental research in photosynthesis and carbon and nitrogen fixation. In addition, they are important for several established biotechnologies for producing food additives, nutritional and pharmaceutical compounds, and pigments, as well as emerging biotechnologies for biofuels and other products. Encapsulation of living cyanobacteria into a porous silica gel matrix is a recent approach that may dramatically improve the efficiency of certain production processes by retaining the biomass within the reactor and modifying cellular metabolism in helpful ways. Although encapsulation has been explored empirically in the last two decades for a variety of cell types, many challenges remain to achieving optimal encapsulation of cyanobacteria in silica gel. Recent evidence with Synechocystis sp. PCC 6803, for example, suggests that several unknown or uncharacterized proteins are dramatically upregulated as a result of encapsulation. Also, additives commonly used to ease stresses of encapsulating living cells, such as glycerol, have detrimental impacts on photosynthesis in cyanobacteria. This mini-review is intended to address the current status of research on silica sol-gel encapsulation of cyanobacteria and research areas that may further the development of this approach for biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armanini L, Carturan G, Boninsegna S, dal Monte R, Muraca M (1999) SiO2 entrapment of animal cells. Part 2: protein diffusion through collagen membranes coated with SiO2. J Mater Chem 9:3057–3060

    Article  CAS  Google Scholar 

  • Armon R (2000) Sol-gel as reaction matrix for bacterial enzymatic activity. J Sol-Gel Sci Technol 19:289–292

    Article  CAS  Google Scholar 

  • Assink RA, Kay BD (1991) Study of sol-gel chemical reaction kinetics by NMR. Annu Rev Mater Res 21:491–513

    Article  CAS  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  • Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269(5228):1242–1244

    Article  Google Scholar 

  • Bechtold MF, Vest RD, Plambeck L Jr (1968) Silicic acid from tetraethyl silicate hydrolysis. Polymerization and properties. J Am Chem Soc 90(17):4590–4598

    Article  CAS  Google Scholar 

  • Bergogne L, Fennouh S, Guyon S, Roux C, Livage J (2000) Sol-gel entrapment of enzymes. Mater Res Soc Symp Proc 628:10.12.11–10.12.16

    Google Scholar 

  • Bhatia RB, Brinker CJ (2000) Aqueous sol-gel process for protein encapsulation. Chem Mater 12(8):2434–2441

    Article  CAS  Google Scholar 

  • Boninsegna S, Bosetti P, Carturan G, Dellagiacoma G, Monte RD, Rossi M (2003) Encapsulation of individual pancreatic islets by sol-gel SiO2: a novel procedure for perspective cellular grafts. J Biotechnol 100:277–286

    Article  CAS  Google Scholar 

  • Bottcher H, Soltmann U, Mertig M, Pompe W (2004) Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J Mater Chem 14:2176–2188

    Article  Google Scholar 

  • Brasack I, Bottcher H (2000) Biocompatibility of modified silica-protein composite layers. J Sol-Gel Sci Technol 19:479–482

    Article  CAS  Google Scholar 

  • Brennan L, Owende (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brinker CJ (1994) Sol-gel processing of silica. In: Bergna HE (ed) The colloid chemistry of silica. American Chemical Society, Washington, D.C, pp 361–402

    Chapter  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science. Academic, San Diego

    Google Scholar 

  • Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol-gel transition in simple silicates. J Non-Cryst Solids 48:47–64

    Article  CAS  Google Scholar 

  • Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS (1984) Sol-gel transition in simple silicates II. J Non-Cryst Solids 63:45–59

    Article  CAS  Google Scholar 

  • Carturan G, Campostrini R, Dire S, Scardi V, Alteriis ED (1989) Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J Mol Catal 57:L13–L16

    Article  CAS  Google Scholar 

  • Carturan G, Monte RD, Pressi G, Secondin S, Verza P (1998) Production of valuable drugs from plant cells immobilized by hybrid sol-gel SiO2. J Sol-Gel Sci Technol 13:273–276

    Article  CAS  Google Scholar 

  • Chernev GE, Borisova BV, Kabaivanova LV, Salvado IM (2010) Silica hybrid biomaterials containing gelatin synthesized by sol-gel method. Cent Eur J Chem 8(4):870–876

    Article  CAS  Google Scholar 

  • Conroy J, Power ME, Martin J, Earp B, Hosticka B, Daitch CE, Norris PM (2000) Cells in sol-gels I: a cytocompatible route for the production of macroporous silica gels. J Sol-Gel Sci Technol 18:269–283

    Article  CAS  Google Scholar 

  • Coradin T, Livage J (2003) Synthesis and characterization of alginate/silica biocomposites. J Sol-Gel Sci Technol 26:1165–1168

    Article  CAS  Google Scholar 

  • Coradin T, Bah S, Livage J (2004) Gelatine/silicate interactions: from nanoparticles to composite gels. Colloids Surf B Biointerfaces 35:53–58

    Article  CAS  Google Scholar 

  • Davis PJ, Brinker CJ, Smith DM (1992a) Pore structure evolution in silica-gel during aging drying. 1. Temporal and thermal aging. J Non-Cryst Solids 142(3):189–196

    Article  CAS  Google Scholar 

  • Davis PJ, Brinker CJ, Smith DM (1992b) Pore structure evolution in silica-gel during aging drying. 2. Effect of pore fluids. J Non-Cryst Solids 142(3):197–207

    Article  CAS  Google Scholar 

  • Depagne C, Roux C, Coradin T (2011) How to design cell-based biosensors using the sol-gel process. Anal Bioanal Chem 400(4):965–976

    Article  CAS  Google Scholar 

  • Dickson DJ, Ely RL (2011) Evaluation of encapsulation stress and the effect of additives on viability and photosynthetic activity of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 91(6):1633–1646

    Article  CAS  Google Scholar 

  • Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol-gel. Int J Hydrog Energy 34(1):204–215

    Article  CAS  Google Scholar 

  • Dickson DJ, Luterra MD, Ely RL (2012a) Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 96(1):183–196

    Article  CAS  Google Scholar 

  • Dickson DJ, Lassetter B, Glassy B, Page CJ, Yokochi AFT, Ely RL (2012b) Diffusion of dissolved ions from wet silica sol-gel monoliths: implications for biological encapsulation. Colloids Surf B Biointerfaces 102:611–619

    Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668

    Article  CAS  Google Scholar 

  • Eglin D, Mosser G, Giraud-Guille M-M, Livage J, Coradin T (2005) Type I collagen, a versatile liquid crystal biological template for silica structuration from nano- to microscopic scales. Soft Matter 1:129–131

    Article  CAS  Google Scholar 

  • Ellerby LM, Nashida CR, Nashida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255(5048):1113–1115

    Article  CAS  Google Scholar 

  • Fahrenholtz WG, Smith DM, Hua D (1992) Formation of microporous silica gels from a modified silicon alkoxide. I. Base-catalyzed gels. J Non-Cryst Solids 144:45–52

    Article  CAS  Google Scholar 

  • Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131(4):1628–1637

    Article  CAS  Google Scholar 

  • Ferrer ML, Yuste L, Rojo F, Monte FD (2003) Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrices. Chem Mater 15(19):3614–3618

    Article  CAS  Google Scholar 

  • Fiedler D, Hager U, Franke H, Soltmann U, Bottcher H (2007) Algae biocers: astaxanthin formation in sol-gel immobilised living microalgae. J Mater Chem 17(3):261–266

    Article  CAS  Google Scholar 

  • Frenkel-Mullerad H, Avnir D (2005) Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J Am Chem Soc 127:8077–8081

    Article  CAS  Google Scholar 

  • Fu P (2008) Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. J Chem Technol Biotechnol 84:473–483

    Article  Google Scholar 

  • Gadre SY, Gouma PI (2006) Biodoped ceramics: synthesis, properties, and applications. J Am Ceram Soc 89(10):2987–3002

    Article  CAS  Google Scholar 

  • Gautier C, Livage J, Coradin T, Lopez PJ (2006) Sol-gel encapsulation extends diatom viability and reveals their silica dissolution capability. Chem Commun 44:4611–4613

    Article  Google Scholar 

  • Glaser RH, Wilkes GL (1989) Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J Non-Cryst Solids 113:73–87

    Article  CAS  Google Scholar 

  • Gupta RP (1985) Electronic structure of crystalline and amorphous silicon dioxide. Phys Rev B 32(12):8278–8292

    Article  CAS  Google Scholar 

  • Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22(11):2387–2399

    Article  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35(1):87–123

    Article  CAS  Google Scholar 

  • Hagemann M, Jeanjean R, Fulda S, Havaux M, Joset F, Erdmann N (1999) Flavodoxin accumulation contributes to enhanced cyclic electron flow around photosystem I in salt-stressed cells of Synechocystis sp. strain PCC 6803. Physiol Plant 105(4):670–678

    Article  CAS  Google Scholar 

  • Hench LL (1998) Sol-gel silica: properties, processing and technology transfer. Noyes Publications, Westwood

    Google Scholar 

  • Ibach H (2006) Physics of surfaces and interfaces. Springer, Berlin

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Jiang HM, Zheng Z, Li ZM, Wang XL (2006) Effects of temperature and solvent on the hydrolysis of alkoxysilane under alkaline conditions. Ind Eng Chem Res 45(25):8617–8622

    Article  CAS  Google Scholar 

  • Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol-gel derived materials. Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  • Kandimalla V, Tripathi V, Ju H (2006) Immobilization of biomolecules in sol-gels: biological and analytical applications. Crit Rev Anal Chem 36(2):73–106

    Article  CAS  Google Scholar 

  • Kay BD, Assink RA (1988) Sol-gel kinetics: II. Chemical speciation modeling. J Non-Cryst Solids 104(1):112–122

    Article  CAS  Google Scholar 

  • Kelts LW, Armstrong NJ (1989) A silicon-29 NMR study of the structural intermediates in low pH sol-gel reactions. J Mater Res 4(2):423–433

    Article  CAS  Google Scholar 

  • Klein LC (1985) Sol-gel processing of silicates. Annu Rev Mater Res 15:227–248

    Article  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144(2):1200–1210

    Article  CAS  Google Scholar 

  • Kondo K, Mullineaux CW, Ikeuchi M (2009) Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 99:217–225

    Article  CAS  Google Scholar 

  • Koslowski T, Kob W, Vollmayr K (1997) Numerical study of the electronic structure of amorphous silica. Phys Rev B 56(15):9469–9476

    Article  CAS  Google Scholar 

  • Kriegl JM, Forster FK, Nienhaus GU (2003) Charge recombination and protein dynamics in bacterial photosynthetic reaction centers entrapped in a sol-gel matrix. Biophys J 85:1851–1870

    Article  CAS  Google Scholar 

  • Kuncova G, Podrazky O (2004) Monitoring of the viability of cells immobilized by sol-gel process. J Sol-Gel Sci Technol 31:335–342

    Article  CAS  Google Scholar 

  • Laughlin RB, Joannopoulos JD, Chadi DJ (1979) Bulk electronic structure of SiO2. Phys Rev B 20(12):52285237

    Article  Google Scholar 

  • Leonard A, Rooke JC, Meunier CF, Sarmento H, Descy J-P, Su B-L (2010) Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy Environ Sci 3(3):370–377

    Article  CAS  Google Scholar 

  • Leonard A, Dandoy P, Danloy E, Leroux G, Meunier CF, Rooke JC, Su B-L (2011) Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem Soc Rev 40(2):860–885

    Article  CAS  Google Scholar 

  • Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13:R673–R691

    Article  CAS  Google Scholar 

  • Lu X (2010) A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746

    Article  CAS  Google Scholar 

  • Marin K, Huckauf J, Fulda S, Hagemann M (2002) Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 84(11):2870–2877

    Article  Google Scholar 

  • McCormick A (1994) Recent progress in the study of the kinetics of sol-gel SiO2 synthesis reactions. In: Attia YA (ed) Sol-gel processing and applications. Plenum, New York pp, pp 3–16

    Chapter  Google Scholar 

  • Meunier CF, Dandoy P, Su BL (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342:211–224

    Article  CAS  Google Scholar 

  • Muallem A, Bruce D, Hall DO (1983) Photoproduction of H-2 and NADPH2 by polyurethane-immobilized cyanobacteria. Biotechnol Lett 5(6):365–368

    Article  CAS  Google Scholar 

  • Nair BN, Elferink WJ, Keizer K, Verweij H (1996) Sol-gel synthesis and characterization of microporous silica membranes I: SAXS study on the growth of polymeric structures. J Colloid Interface Sci 178(2):565–570

    Article  CAS  Google Scholar 

  • Nassif N (2002) Living bacteria in silica gels. Nat Mater 1:42–44

    Article  CAS  Google Scholar 

  • Nassif N, Cc R, Coradin T, Rager M-N, Bouvet OMM, Livage J (2003) A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:203–208

    Article  CAS  Google Scholar 

  • Nassif N, Roux C, Coradin T, Bouvet OMM, Livage J (2004) Bacteria quorum sensing in silica matrices. J Mater Chem 14:2264–2268

    Article  CAS  Google Scholar 

  • Nguyen-Ngoc H, Tran-Minh C (2007a) Sol-gel process for vegetal cell encapsulation. Mater Sci Eng C 27(4):607–611

    Article  CAS  Google Scholar 

  • Nguyen-Ngoc H, Tran-Minh C (2007b) Fluorescent biosensor using whole cells in an inorganic translucent matrix. Anal Chim Acta 583(1):161–165

    Article  CAS  Google Scholar 

  • Nieto A, Areva S, Wilson T, Viitala R, Vallet-Regi M (2009) Cell viability in a wet silica gel. Acta Biomater 5(9):3478–3487

    Article  CAS  Google Scholar 

  • Pang JB, Qiu KY, Wei Y (2001) Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol-gel process. J Non-Cryst Solids 283(2–3):101–108

    Article  CAS  Google Scholar 

  • Parmer A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  Google Scholar 

  • Perullini M, Amoura M, Roux C, Coradin T, Livage J, Japas ML, Jobbagy M, Bilmes SA (2011) Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J Mater Chem 21(12):4546–4552

    Article  CAS  Google Scholar 

  • Pierre AC (2004) The sol-gel encapsulation of enzymes. Biocat Biotrans 22(3):145–170

    Article  CAS  Google Scholar 

  • Pope EJA, Mackenzie JD (1986) Sol-gel processing of silica II: the role of the catalyst. J Non-Cryst Solids 87:185–198

    Article  CAS  Google Scholar 

  • Pope EJA, Braun K, Peterson CM (1997) Bioartificial organs I: Silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639

    CAS  Google Scholar 

  • Pouxviel JC, Boilot JP, Beloeil JC, Lallemand JY (1987) NMR study of the sol-gel polymerization. J Non-Cryst Solids 89:345–360

    Article  CAS  Google Scholar 

  • Pressi G, Toso RD, Monte RD (2003) Production of enzymes by plant cells immobilized by sol-gel silica. J Sol-Gel Sci Technol 26:1189–1193

    Article  CAS  Google Scholar 

  • Raman NK, Wallace S, Brinker CJ (1996) Shrinkage and microstructural development during drying of organically modified silica xerogels. Mater Res Soc Symp Proc 435:6

    Article  Google Scholar 

  • Reetz MT, Tielmann P, Wiesenhofer W, Konen W, Zonta A (2003) Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A (2001) Synthesis and characterization of gelatin-siloxane hybrids derived through sol-gel procedure. J Sol-Gel Sci Technol 21:115–121

    Article  Google Scholar 

  • Rooke JC, Leonard A, Su BL (2008) Targeting photobioreactors: Immobilisation of cyanobacteria within porous silica gel using biocompatible methods. J Mater Chem 18:1333–1341

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564

    Article  CAS  Google Scholar 

  • Taylor A, Finnie KS, Bartlett JR, Holden PJ (2004) Encapsulation of viable aerobic microorganisms in silica gels. J Sol-Gel Sci Technol 32:223–228

    Article  CAS  Google Scholar 

  • Yoldas BE (1979) Monolithic glass formation by chemical polymerization. J Mater Sci 14(8):1843–1849

    Article  CAS  Google Scholar 

  • Yu D, Volponi J, Chhabra S, Brinker CJ, Mulchandani A, Singh AK (2005) Aqueous sol-gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosens Bioelectron 20(7):1433–1437

    Article  CAS  Google Scholar 

  • Zadvorny OA, Barrows AM, Zorin NA, Peters JW, Elgren TE (2010) High level of hydrogen production activity achieved for hydrogenase encapsulated in sol–gel material doped with carbon nanotubes. J Mater Chem 20:1065–1067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger L. Ely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, D.J., Ely, R.L. Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research. Appl Microbiol Biotechnol 97, 1809–1819 (2013). https://doi.org/10.1007/s00253-012-4686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4686-8

Keywords

Navigation