Skip to main content

Advertisement

Log in

Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arensdorf JJ, Focht DD (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60(8):2884–2889

    PubMed  CAS  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555

    Article  PubMed  CAS  Google Scholar 

  • Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls—from sediment to defined medium. Annu Rev Microbiol 62:253–270

    Article  PubMed  CAS  Google Scholar 

  • Burkhard J, Macková M, Macek T, Kučerová P, Demnerová K (1997) Analytical procedure for the estimation of polychlorinated biphenyl transformation by plant tissue cultures. Anal Commun 34(10):287–290

    Article  CAS  Google Scholar 

  • Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103(42):15280–15287

    Article  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28(5):981–988

    Article  Google Scholar 

  • Erickson BD, Mondello FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59(11):3858–3862

    PubMed  CAS  Google Scholar 

  • Freudenberg K, Neish AC (eds) (1968) The constitution and biosynthesis of lignin. Springer, New York, pp 47–122

    Google Scholar 

  • Fries MR, Zhou J, Chee-Sanford J, Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60(8):2802–2810

    PubMed  CAS  Google Scholar 

  • Furukawa K, Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol 166(2):392–398

    PubMed  CAS  Google Scholar 

  • Furukawa K, Suenaga H, Goto M (2004) Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 186(16):5189–5196

    Article  PubMed  CAS  Google Scholar 

  • Gallagher E, McGuinness L, Phelps C, Young LY, Kerkhof LJ (2005) 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol 71(9):5192–5196

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 63(5):1933–1938

    PubMed  CAS  Google Scholar 

  • Ginard M, Lalucat J, Tummler B, Romling U (1997) Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol 47(1):132–143

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257

    Article  CAS  Google Scholar 

  • Havel J, Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 78(2–3):163–170

    CAS  Google Scholar 

  • Hernandez BS, Koh SC, Chial M, Focht DD (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8(3):153–158

    Article  CAS  Google Scholar 

  • Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H, Kawahara K (2002) Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Fahey GC (1983) Nutritional implications of phenolic monomers and lignin—a review. J Anim Sci 57(1):206–219

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14(10):1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17(1):6–15

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Leigh MB, Fletcher JS, Fu X, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36(7):1579–1583

    Article  PubMed  CAS  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlík O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1(2):134–148

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Kotrba P, Svatoš A, Nováková M, Demnerová K, Macková M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26(3):146–152

    Article  PubMed  CAS  Google Scholar 

  • Macková M, Dowling D, Macek T (eds) (2006) Phytoremediation and rhizoremediation. Theoretical background. Springer, Dordrecht

    Google Scholar 

  • Macková M, Prouzová P, Štursa P, Ryšlavá E, Uhlík O, Beranová K, Rezek J, Kurzawová V, Demnerová K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16(7):817–829

    Article  Google Scholar 

  • Mukerjee-Dhar G, Hatta T, Shimura M, Kimbara K (1998) Analysis of changes in congener selectivity during PCB degradation by Burkholderia sp. strain TSN101 with increasing concentrations of PCB and characterization of the bphBCD genes and gene products. Arch Microbiol 169(1):61–70

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132(1):146–153

    Article  PubMed  CAS  Google Scholar 

  • Pavlíková D, Macek T, Macková M, Pavlík M (2007) Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int J Phytoremediation 9(1):71–78

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Schnoor JL, Licht LA, Mccutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):A318–A323

    Google Scholar 

  • Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 53(4):562–570

    Article  PubMed  CAS  Google Scholar 

  • Singer AC (2006) Bioremediation and phytoremediation from mechanistic and ecological perspectives. In: Mackova M, Dowling D, Macek T (eds) Focus on biotechnology, 9Ath edn. Springer, Dordrecht, pp 5–21

    Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54(6):838–843

    Article  PubMed  CAS  Google Scholar 

  • Singer AC, Smith D, Jury WA, Hathuc K, Crowley DE (2003a) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 22(9):1998–2004

    Article  PubMed  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003b) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21(3):123–130

    Article  PubMed  CAS  Google Scholar 

  • Singer AC, Thompson IP, Bailey MJ (2004) The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Curr Opin Microbiol 7(3):239–244

    Article  PubMed  CAS  Google Scholar 

  • Slater H, Gouin T, Leigh MB (2011) Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84(2):199–206

    Article  PubMed  CAS  Google Scholar 

  • Song B, Haggblom MM, Zhou J, Tiedje JM, Palleroni NJ (1999) Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 49(Pt 3):1129–1140

    Article  PubMed  CAS  Google Scholar 

  • Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev Med Chem 12(8):749–767

    Article  PubMed  CAS  Google Scholar 

  • Sul WJ, Park J, Quensen JF III, Rodrigues JL, Seliger L, Tsoi TV, Zylstra GJ, Tiedje JM (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75(17):5501–5506

    Article  PubMed  CAS  Google Scholar 

  • Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30(9):2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Tillmann S, Strompl C, Timmis KN, Abraham WR (2005) Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol 52(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Toussaint J-P, Pham T, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    Article  PubMed  CAS  Google Scholar 

  • Tsui VWK, Wong RWK, Rabie ABM (2008) The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytother Res 22(3):401–406

    Article  PubMed  CAS  Google Scholar 

  • Uhlík O, Ječná K, Macková M, Vlček C, Hroudová M, Demnerová K, Pačes V, Macek T (2009) Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol 75(20):6471–6477

    Article  PubMed  Google Scholar 

  • Uhlík O, Strejček M, Junková P, Šanda M, Hroudová M, Vlček C, Macková M, Macek T (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77(19):6858–6866

    Article  PubMed  Google Scholar 

  • Uhlík O, Wald J, Strejček M, Musilová L, Rídl J, Hroudová M, Vlček Č, Cardenas E, Macková M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7(7):e40653

    Article  PubMed  Google Scholar 

  • Uhlík O, Leewis MC, Strejček M, Musilová L, Macková M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv. doi:10.1016/j.biotechadv.2012.09.003

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinforma 7:57

    Article  Google Scholar 

Download references

Acknowledgments

Project cofunding is acknowledged by the European Commission within the Seventh Framework Programme (grant 265946, MINOTAURUS) and by the Ministry of Education, Youth and Sports of the Czech Republic (grant ME 10041). The authors are grateful to Michal Strejcek for his assistance in data handling and his comments to the manuscript. Last but not least, we would like to thank Mary-Cathrine Leewis for helping with the language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ondrej Uhlik or Tomas Macek.

Additional information

Ondrej Uhlik and Lucie Musilova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlik, O., Musilova, L., Ridl, J. et al. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl Microbiol Biotechnol 97, 9245–9256 (2013). https://doi.org/10.1007/s00253-012-4627-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4627-6

Keywords

Navigation