Skip to main content
Log in

Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca2+ or Mg2+ at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acero EH, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab H, Guebitz G (2011) Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44(12):4632–4640. doi:10.1021/Ma200949p

    Article  Google Scholar 

  • Araya K (1993) Relationship between the decay types of dead wood and occurrence of lucanid beetles (Coleoptera: Lucanidae). Appl Entomol Zool 28(1):27–33

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487. doi:10.1146/annurev.en.39.010194.002321

    Article  CAS  Google Scholar 

  • Chatterjee S, Roy B, Roy D, Banerjee R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab 95(2):195–200. doi:10.1016/j.polymdegradstab.2009.11.025

    Article  CAS  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: Aphid and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37. doi:10.1146/annurev.ento.43.1.17

    Article  PubMed  CAS  Google Scholar 

  • Elbanna K, Lütke-Eversloh T, Jendrossek D, Luftmann H, Steinbüchel A (2004) Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHP)-degrading bacteria and PHA depolymerases. Arch Microbiol 182:212–225. doi:10.1007/s00203-004-0715-z

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371. doi:10.1099/00207713-50-3-1351

    Article  PubMed  CAS  Google Scholar 

  • Fonseca Á, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, New York, pp 1661–1737

    Chapter  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807. doi:10.1126/science.297.5582.803

    Article  PubMed  CAS  Google Scholar 

  • Iefuji H, Iimura Y, Obata T (1994) Isolation and characterization of a yeast Cryptococcus sp. S-2 that produces raw starchdigesting alpha-amylase, xylanase, and polygalacturonase. Biosci Biotechnol Biochem 58(12):2261–2262. doi:10.1271/bbb.58.2261

    Article  CAS  Google Scholar 

  • Iyer S, Shah R, Sharma A, Jendrossek D, Desai A (2000) Purification of Aspergillus fumigatus (Pdf1) poly(β-hydroxybutyrate) (PHB) depolymerase using a new, single-step substrate affinity chromatography method: characterization of the PHB depolymerase exhibiting novel self-aggregation behavior. J Polym Environ 8(4):197–203. doi:10.1023/A:1015249811314

  • Kamini NR, Fujii T, Kurosu T, Iefuji H (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp S-2. Process Biochem 36(4):317–324. doi:10.1016/S0032-9592%2800%2900228-4

    Article  CAS  Google Scholar 

  • Kasuya K, Ishii N, Inoue Y, Yazawa K, Tagaya T, Yotsumoto T, Kazahaya J, Nagai D (2009) Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polym Degrad Stab 94(8):1190–1196. doi:10.1016/j.polymdegradstab.2009.04.013

    Article  CAS  Google Scholar 

  • Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1(1):44. doi:10.1186/2191-0855-1-44

    Article  PubMed  Google Scholar 

  • Kodama Y, Masaki K, Kondo H, Suzuki M, Tsuda S, Nagura T, Shimba N, Suzuki E, Iefuji H (2009) Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins 77(3):710–717. doi:10.1002/prot.22484

    Article  PubMed  CAS  Google Scholar 

  • Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Shinozaki Y, Tsushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:40. doi:10.1186/2191-0855-2-40

    Article  PubMed  Google Scholar 

  • Kwon-Chung KJ (2011) Filobasidium Olive (1968). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, New York, pp 1457–1465

    Chapter  Google Scholar 

  • Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(3):227–227. doi:10.1007/s10924-007-0063-6

    Article  CAS  Google Scholar 

  • Lange K-B (2011) Bioplastics to pass the one million tonne mark in 2011. Press Release, European Bioplastics, Berlin

    Google Scholar 

  • Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67(6):778–788. doi:10.1007/s00253-004-1853-6

    Article  PubMed  CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71(11):7548–7550. doi:10.1128/AEM.71.11.7548-7550.2005

    Article  PubMed  CAS  Google Scholar 

  • Masaki K, Tsuchioka H, Hirano T, Kato M, Ikeda H, Iefuji H (2012) Construction of a new recombinant protein expression system in the basidiomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme. Appl Microbiol Biotechnol 93(4):1627–1636. doi:10.1007/s00253-011-3680-x

    Article  PubMed  CAS  Google Scholar 

  • Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophiles HB8. Appl Microbiol Biotechnol 83:659–668. doi:10.1007/s00253-008-1842-2

  • Papaneophytou CP, Pantazaki AA (2011) A novel affinity chromatographic material for the purification of extracellular polyhydroxybutyrate depolymerases. J Polym Environ 19:876–886. doi:10.1007/s10924-011-0345-x

    Google Scholar 

  • Park DS, Oh HW, Jeong WJ, Kim H, Park HY, Bae KS (2007) A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J Microbiol 45(5):394–401

    PubMed  CAS  Google Scholar 

  • Ronkvist AM, Lu WH, Feder D, Gross RA (2009) Cutinase-catalyzed deacetylation of poly(vinyl acetate). Macromolecules 42(16):6086–6097. doi:10.1021/Ma900530j

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858. doi:10.1021/ac950914h

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2012a) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4188-8

  • Shinozaki Y, Watanabe T, Nakajima-Kambe T, Kitamoto HK (2012b) Rapid and simple colorimetric assay for detecting the enzymatic degradation of biodegradable plastic films. J Biosci Bioeng. doi:10.1016/j.jbiosc.2012.08.010

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109(Pt 3):261–265. doi:10.1017/S0953756205002388

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi M, Kubota K, Matsushita N, Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97:311–317. doi:10.1007/s00114-009-0643-5

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Tokiwa Y, Nakahara T (2000) Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol Lett 189(1):25–29. doi:10.1111/j.1574-6968.2000.tb09201.x

    Article  PubMed  CAS  Google Scholar 

  • Vega FE, Dowd PF (2005) The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M (eds) Insect–fungal associations: ecology and evolution. Oxford University Press, New York, pp 211–243

    Google Scholar 

Download references

Acknowledgments

We thank Showa Denko K. K. for generously supplying the Bionolle materials (PBS and PBSA) and Ms. C. Xiao-Hong for the technical assistance. We also acknowledge Dr. H. Iefuji and Dr. T. Nakajima-Kambe as well as Dr. E. Suto for the valuable comments in this research. This research was financially supported by the Ministry of the Environment, KAKENHI (235658083), and the National Institute for Agro-Environmental Sciences, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko K. Kitamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 3969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Sakamoto, H., Shinozaki, Y. et al. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis . Appl Microbiol Biotechnol 97, 7679–7688 (2013). https://doi.org/10.1007/s00253-012-4595-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4595-x

Keywords

Navigation