Skip to main content

Advertisement

Log in

Surface charge engineering of a Bacillus gibsonii subtilisin protease

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In proteins, a posttranslational deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartic (Asp) and glutamic acid (Glu), respectively. This process changes the protein net charge affecting enzyme activity, pH optimum, and stability. Understanding the principles which affect these enzyme properties would be valuable for protein engineering in general. In this work, three criteria for selecting amino acid substitutions of the deamidation type in the Bacillus gibsonii alkaline protease (BgAP) are proposed and systematically studied in their influence on pH-dependent activity and thermal resistance. Out of 113 possible surface amino acids, 18 (11 Asn and 7 Gln) residues of BgAP were selected and evaluated based on three proposed criteria: (1) The Asn or Gln residues should not be conserved, (2) should be surface exposed, and (3) neighbored by glycine. “Deamidation” in five (N97, N253, Q37, Q200, and Q256) out of eight (N97, N154, N250, N253, Q37, Q107, Q200, and Q256) amino acids meeting all criteria resulted in increased proteolytic activity. In addition, pH activity profiles of the variants N253D and Q256E and the combined variant N253DQ256E were dramatically shifted towards higher activity at lower pH (range of 8.5–10). Variant N253DQ256E showed twice the specific activity of wild-type BgAP and its thermal resistance increased by 2.4 °C at pH 8.5. These property changes suggest that mimicking surface deamidation by substituting Gln by Glu and/or Asn by Asp might be a simple and fast protein reengineering approach for modulating enzyme properties such as activity, pH optimum, and thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ballinger MD, Tom J, Wells JA (1995) Designing subtilisin BPN' to cleave substrates containing dibasic residues. Biochemistry 34:13312–13319

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R, Schlüter H (2012) Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J Proteomics 75:2275–2296

    Article  PubMed  CAS  Google Scholar 

  • Bodanszky M, Kwei JZ (1978) Side reactions in peptide synthesis VII. Sequence dependence in the formation of aminosuccinyl derivatives from beta-benzyl-aspartyl peptides. Int J Pept Protein Res 12:69–74

    Article  PubMed  CAS  Google Scholar 

  • Brode PF, Erwin CR, Rauch DS, Barnett BL, Armpriester JM, Wang ESF, Rubingh DN (1996) Subtilisin BPN' variants: increased hydrolytic activity on surface-bound substrates via decreased surface activity. Biochemistry 35:3162–3169

    Article  PubMed  CAS  Google Scholar 

  • Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222

    Google Scholar 

  • Capasso S, Mazzarella L, Sica F, Zagari A (1989) Deamidation via cyclic imide in asparaginyl peptides. Pept Res 2:195–200

    PubMed  CAS  Google Scholar 

  • Catak S, Monard G, Aviyente V, Ruiz-Lopez MF (2009) Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms. J Phys Chem A 113:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Chavira R Jr, Burnett TJ, Hageman JH (1984) Assaying proteinases with azocoll. Anal Biochem 136:446–450

    Article  PubMed  CAS  Google Scholar 

  • Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435:1–16

    Article  PubMed  CAS  Google Scholar 

  • De Kreij A, Van den Burg B, Venema G, Vriend G, Eijsink VGH, Nielsen JE (2002) The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease. J Biol Chem 277:15432–15438

    Article  PubMed  Google Scholar 

  • Di Cera E (2008) Engineering protease specificity made simple, but not simpler. Nat Chem Biol 4:270–271

    Article  PubMed  Google Scholar 

  • Erwin CR, Barnett BL, Oliver JD, Sullivan JF (1990) Effects of engineered salt bridges on the stability of subtilisin BPN'. Protein Eng 4:87–97

    Article  PubMed  CAS  Google Scholar 

  • Feller BE, Kellis JT Jr, Cascao-Pereira LG, Robertson CR, Frank CW (2010) The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis. Langmuir 26:18916–18925

    Article  PubMed  CAS  Google Scholar 

  • Goddette DW, Paech C, Yang SS, Mielenz JR, Bystroff C, Wilke ME, Fletterick RJ (1992) The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 A resolution. J Mol Biol 228:580–595

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  PubMed  CAS  Google Scholar 

  • Jaouadi B, Aghajari N, Haser R, Bejar S (2010) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Tanaka A, Lee Y, Matsudomi N, Kobayashi K (1987a) Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins. J Agric Food Chem 35:285–288

    Article  CAS  Google Scholar 

  • Kato A, Tanaka A, Matsudomi N, Kobayashi K (1987b) Deamidation of food proteins by protease in alkaline pH. J Agric Food Chem 35:224–227

    Article  CAS  Google Scholar 

  • Kato A, Tanimoto S, Muraki Y, Kobayashi K, Kumagai I (1992) Structural and functional properties of hen egg-white lysozyme deamidated by protein engineering. Biosci Biotech Biochem 56:1424–1428

    Article  CAS  Google Scholar 

  • Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444

    PubMed  CAS  Google Scholar 

  • Knight ZA, Garrison JL, Chan K, King DS, Shokat KM (2007) A remodelled protease that cleaves phosphotyrosine substrates. J Am Chem Soc 129:11672–11673

    Article  PubMed  CAS  Google Scholar 

  • Kossiakoff AA (1988) Tertiary structure is a principal determinant to protein deamidation. Science 240:191–194

    Article  PubMed  CAS  Google Scholar 

  • Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47:393–402

    Article  PubMed  CAS  Google Scholar 

  • Kuhn P, Knapp M, Soltis SM, Ganshaw G, Thoene M, Bott R (1998) The 0.78 A structure of a serine protease: Bacillus lentus subtilisin. Biochemistry 37:13446–13452

    Article  PubMed  CAS  Google Scholar 

  • Leisola M, Turunen O (2007) Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol 75:1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Roccatano D, Lorenz M, Schwaneberg U (2012) Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease. ChemBioChem 13:691–699

    Article  PubMed  CAS  Google Scholar 

  • Loladze VV, Ibarra-Molero B, Sanchez-Ruiz JM, Makhatadze GI (1999) Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry 38:16419–16423

    Article  PubMed  CAS  Google Scholar 

  • Martinez R, Schwaneberg U, Roccatano D (2011) Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Eng Des Sel 24:533–544

    Article  PubMed  CAS  Google Scholar 

  • Maurer K-H (2004) Detergent proteases. Curr Opin Biotech 15:330–334

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Paech C, Christianson T, Maurer K-H (1993) Zymogram of proteases made with developed film from nondenaturing polyacrylamide gels after electrophoresis. Anal Biochem 208:249–254

    Article  PubMed  CAS  Google Scholar 

  • Pogson M, Georgiou G, Iverson BL (2009) Engineering next generation proteases. Curr Opin Biotech 20:390–397

    Article  PubMed  CAS  Google Scholar 

  • Robinson NE, Robinson AB (2004) Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Althouse, Cave Junction

    Google Scholar 

  • Russell AJ, Fersht AR (1987) Rational modification of enzyme catalysis by engineering surface charge. Nature 328:496–500

    Article  PubMed  CAS  Google Scholar 

  • Sakoda H, Imanaka T (1992) Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH. J Bacteriol 174:1397–1402

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz JM, Makhatadze GI (2001) To charge or not to charge? Trends Biotechnol 19:132–135

    Article  PubMed  CAS  Google Scholar 

  • Siegert P, Wieland S, Engelskirchen J, Merkel M, Maurer KH, Bessler C (2009) Novel alkaline protease from Bacillus gibsonii and washing and cleaning agents containing said novel alkaline protease. United States Patent, 2009

  • Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Strub C, Alies C, Lougarre A, Ladurantie C, Czaplicki J, Fournier D (2004) Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochem 5:9

    Article  PubMed  Google Scholar 

  • Teshima G, Porter J, Yim K, Ling V, Guzzetta A (1991) Deamidation of soluble CD4 at asparagine-52 results in reduced binding capacity for the HIV-1 envelope glycoprotein gp120. Biochemistry 30:3916–3922

    Article  PubMed  CAS  Google Scholar 

  • Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VG (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A 95:2056–2060

    Article  PubMed  Google Scholar 

  • Vojcic L, Despotovic D, Martinez R, Maurer KH, Schwaneberg U (2012) An efficient transformation method for Bacillus subtilis DB104. Appl Microbiol Biotechnol 94:487–493

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26:680–682

    PubMed  CAS  Google Scholar 

  • Wilson CR, Tang MR, Christianson T, Maurer KH, Weiss A (1999) Expression systems for commercial production of cellulase and xylanase in Bacillus subtilis and Bacillus licheniformis. United States Patent, 1999

  • Wright HT (1991) Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng 4:283–294

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Arnold FH (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12:47–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Government through the Bundesministerium für Bildung und Forschung [FKZ, 0315035A to U.S.] and Henkel AG & Co. KGaA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schwaneberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, F., Martinez, R., Mandawe, J. et al. Surface charge engineering of a Bacillus gibsonii subtilisin protease. Appl Microbiol Biotechnol 97, 6793–6802 (2013). https://doi.org/10.1007/s00253-012-4560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4560-8

Keywords

Navigation