Skip to main content
Log in

Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp.

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phorbasin H is a diterpene acid of a bisabolane-related skeletal class isolated from the marine sponge Phorbas sp. In this study, we examined whether phorbasin H acted as a yeast-to-hypha transition inhibitor of Candida albicans. Growth experiments suggest that this compound does not inhibit yeast cell growth but inhibits filamentous growth in C. albicans. Northern blot analysis of signaling pathway components indicated that phorbasin H inhibited the expression of mRNAs related to cAMP–Efg1 pathway. The exogenous addition of db-cAMP to C. albicans cells had no influence on the frequency of hyphal formation. The expression of hypha-specific HWP1 and ALS3 mRNAs, both of which are positively regulated by the important regulator of cell wall dynamics Efg1, was significantly inhibited by the addition of phorbasin H. This compound also reduced the ability of C. albicans cells to adhere in a dose-dependent manner. Our findings suggest that phorbasin H impacts the activity of the cAMP–Efg1 pathway, thus leading to an alteration of C. albicans morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, Nicholls S, Knight AW, Enjalbert B, Walmsley R, Odds FC, Gow NA, Brown AJ (2007) Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6:682–692

    Article  Google Scholar 

  • Bahn YS, Sundstrom P (2001) CAP1, an adenylate cyclase-associated protein gene, regulates bud–hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol 183:3211–3223

    Article  CAS  Google Scholar 

  • Biswas S, Roy M, Datta A (2003) N-Acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. Microbiology 149:2597–2608

    Article  CAS  Google Scholar 

  • Bramley TA, Menzies GS, Williams RJ, Kinsman OS, Adams DJ (1991) Binding sites for LH in Candida albicans: comparison with the mammalian corpus luteum LH receptor. J Endocrinol 130:177–190

    Article  CAS  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    Article  CAS  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 101:5048–5052

    Article  CAS  Google Scholar 

  • Chung SC, Kim TI, Ahn CH, Shin J, Oh KB (2010) Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid. FEBS Lett 584:4639–4645

    Article  CAS  Google Scholar 

  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1–cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62

    Article  CAS  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    CAS  Google Scholar 

  • Gauwerky K, Borelli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14:214–222

    Article  CAS  Google Scholar 

  • Han TL, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763

    Article  CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    Article  CAS  Google Scholar 

  • Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341

    Article  CAS  Google Scholar 

  • Jang KH, Jeon J, Ryu S, Lee HS, Oh KB, Shin J (2008) Polyoxygenated diterpenes from the sponge Phorbas sp. J Nat Prod 71:1701–1707

    Article  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  Google Scholar 

  • Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912

    Article  CAS  Google Scholar 

  • Kim S, Kim E, Shin DS, Kang H, Oh KB (2002) Evaluation of morphogenic regulatory activity of farnesoic acid and its derivatives against Candida albicans dimorphism. Bioorg Med Chem Lett 12:895–898

    Article  Google Scholar 

  • Kokame K, Kato H, Miyata T (1996) Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis, GRP78/BiP and novel genes. J Biol Chem 271:29659–29665

    Article  CAS  Google Scholar 

  • Krasowska A, Murzyn A, Dyjankiewicz A, Lukaszewicz M, Dziadkowiec D (2009) The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Res 9:1312–1321

    Article  CAS  Google Scholar 

  • Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153

    Article  CAS  Google Scholar 

  • Lee HS, Park SY, Sim CJ, Rho JR (2008) Phorbasins G–I: three new diterpenoids from the sponge Phorbas gukulensis. Chem Pharm Bull 56:1198–1200

    Article  CAS  Google Scholar 

  • Liu H, Köhler J, Fink GR (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726

    Article  CAS  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  Google Scholar 

  • Mattia E, Carruba G, Angiolella L, Cassone A (1982) Induction of germ tube formation by N-acetyl-d-glucosamine in Candida albicans: uptake of inducer and germinative response. J Bacteriol 152:555–562

    CAS  Google Scholar 

  • Merson-Davies LA, Odds FC (1989) A morphology index for characterization of cell shape in Candida albicans. J Gen Microbiol 135:3143–3152

    CAS  Google Scholar 

  • Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Lukaszewicz M (2010) Capric acid secreted by Saccharomyces boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 5:e12050

    Article  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465

    Article  CAS  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    Article  CAS  Google Scholar 

  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024

    Article  CAS  Google Scholar 

  • Odds FC (1985) Morphogenesis in Candida albicans. Crit Rev Microbiol 12:45–93

    Article  CAS  Google Scholar 

  • Oh KB, Miyazawa H, Naito T, Matsuoka H (2001) Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci USA 98:4664–4668

    Article  CAS  Google Scholar 

  • Shareck J, Belhumeur P (2011) Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 10:1004–1012

    Article  CAS  Google Scholar 

  • Sharkey LL, Mcnemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA (1999) HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 181:5273–5279

    CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  CAS  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nature Rev Microbiol 9:737–748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant, funded by the Ministry of Education, Science and Technology (NRF-C1ABA001-20120006709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jongheon Shin or Ki-Bong Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Jeon, Je., Ahn, CH. et al. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp.. Appl Microbiol Biotechnol 97, 3141–3148 (2013). https://doi.org/10.1007/s00253-012-4549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4549-3

Keywords

Navigation