Skip to main content
Log in

Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kanR+ gene was not enhanced. These preliminary results suggest biofilm bacteria “sense” antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Ashelford KE (1998) Plasmid transfer between strains of Pseudomonas putida, and their survival, within a pilot scale percolating-filter sewage treatment system. FEMS Microbiol Ecol 18:15–26

    Article  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187

    Article  CAS  Google Scholar 

  • Bathe S, Mohan TV, Wuertz S, Hausner M (2004) Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49:337–344

    CAS  Google Scholar 

  • Beaudoin DL, Bryers JD, Cunningham AB, Peretti SW (1998) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotechnol Bioeng 57:272–279

    Article  CAS  Google Scholar 

  • Boon N, De Gelder L, Lievens H, Siciliano SD, Top EM, Verstraete W (2002) Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ Sci Technol 36:4698–4704

    Article  CAS  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB, Eberl L, Moller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255

    CAS  Google Scholar 

  • Dahlberg C, Bergstrom M, Hermansson M (1998) In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol 64:2670–2675

    CAS  Google Scholar 

  • De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    Article  Google Scholar 

  • Edwards RA, Helm RA, Maloy SR (1999) Increasing DNA transfer efficiency by temporary inactivation of host restriction. Biotechniques 26: 892–894, 896, 898 passim.

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92(Suppl):98S–110S

    Article  Google Scholar 

  • Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030

    Article  CAS  Google Scholar 

  • Haagensen JA, Hansen SK, Johansen T, Molin S (2002) In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42:261–268

    Article  CAS  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    CAS  Google Scholar 

  • Hendrickx L, Hausner M, Wuertz S (2003) Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Appl Environ Microbiol 69:1721–1727

    Article  CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–2407

    CAS  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  CAS  Google Scholar 

  • Hohnstock AM, Stuart-Keil KG, Kull EE, Madsen EL (2000) Naphthalene and donor cell density influence field conjugation of naphthalene catabolism plasmids. Appl Environ Microbiol 66:3088–3092

    Article  CAS  Google Scholar 

  • Hope CK, Wilson M (2003) Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping. J Microbiol Methods 54:403–410

    Article  CAS  Google Scholar 

  • Huang CT, Peretti SW, Bryers JD (1993) Plasmid retention and gene expression in suspended and biofilm cultures of recombinant Escherichia coli DH5alpha (pMJR1750). Biotechnol Bioeng 41:211–220

    Article  CAS  Google Scholar 

  • Huang CT, Peretti SW, Bryers JD (1994) Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol Bioeng 44:329–336

    Article  CAS  Google Scholar 

  • Ingerslev F, Torang L, Loke ML, Halling-Sorensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872

    Article  CAS  Google Scholar 

  • Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep 122:160–166

    Google Scholar 

  • Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732

    Article  CAS  Google Scholar 

  • Ma H, Bryers JD (2010) Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm. J Ind Microbiol Biotechnol 37:1081–1089

    Article  CAS  Google Scholar 

  • Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255:115–120

    Article  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Wattiau P, Wuertz S, Bathe S, Mohan SV, Wilderer PA, Hausner M (2003) Dual labeling of Pseudomonas putida with fluorescent proteins for in situ monitoring of conjugal transfer of the TOL plasmid. Appl Environ Microbiol 69:4846–4852

    Article  CAS  Google Scholar 

  • Ohlsen K, Ternes T, Werner G, Wallner U, Loffler D, Ziebuhr W, Witte W, Hacker J (2003) Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ Microbiol 5:711–716

    Article  CAS  Google Scholar 

  • Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133:203–208

    Article  CAS  Google Scholar 

  • Pinedo CA, Smets BF (2005) Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction proficiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl Environ Microbiol 71:51–57

    Article  CAS  Google Scholar 

  • Ravatn R, Zehnder A, Jvan der Meer JR (1998) Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol 64:2126–2132

    CAS  Google Scholar 

  • Scott R (2009) First State-Specific Healthcare-Associated Infections Summary Data Report. CDC Public Health Report.

  • Slater FR, Bruce KD, Ellis RJ, Lilley AK, Turner SL (2008) Heterogeneous selection in a spatially structured environment affects fitness tradeoffs of plasmid carriage in pseudomonads. Appl Environ Microbiol 74:3189–3197

    Article  CAS  Google Scholar 

  • Slater FR, Bruce KD, Ellis RJ, Lilley AK, Turner SL (2010) Determining the effects of a spatially heterogeneous selection pressure on bacterial population structure at the sub-millimeter scale. Microb Ecol 60:873–884

    Article  Google Scholar 

  • Sorensen SJ, Jensen LE (1998) Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling. Antonie Van Leeuwenhoek 73:69–77

    Article  CAS  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Article  CAS  Google Scholar 

  • Top EM, De Rore H, Collard JM, Gellens V, Slobodkina G, Verstraete W, Mergeay M (1995) Retromobilization of heavy metal resistance genes in unpolluted and heavy metal polluted soil. FEMS Microbiol Ecol 18:191–203

    Article  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  CAS  Google Scholar 

  • Wuertz S, Hendrickx L, Kuehn M, Rodenacker K, Hausner M (2001) In situ quantification of gene transfer in biofilms. Methods Enzymol 336:129–143

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by grants to JDB from NSF (CBET-0450253) and NIH (R01 EB007575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Bryers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOCX 258 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Bryers, J.D. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol 97, 317–328 (2013). https://doi.org/10.1007/s00253-012-4179-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4179-9

Keywords

Navigation