Skip to main content

Advertisement

Log in

Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspension. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • ASTM (1985) Zeta potential of colloids in water and waste water. Standard D:4187-82

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2010) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Matter Res B 93:557–561

    Article  CAS  Google Scholar 

  • Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B-Environ 76:257–263

    Article  CAS  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  • Brayner R, Dahoumane SA, Yepremian C, Djediat C, Meyer MI, Coute A, Fieve F (2010) Zno nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26:6522–6528

    Article  CAS  Google Scholar 

  • Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1096–1077

    Google Scholar 

  • Cho M, Fortner JD, Hughes JB, Kim J-H (2009) Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ Sci Technol 43:7410–7415

    Article  CAS  Google Scholar 

  • Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfelt R, Schilde C, Schaumann GE, Schulz R (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. Pols one 6:e20112

    Article  CAS  Google Scholar 

  • Dunnett CW (1955) Multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Google Scholar 

  • Dutta RK, Sharma PK, Bhargava R, Kumar N, Pandey AC (2010) Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles. J Phys Chem 114:5594–5599

    Article  CAS  Google Scholar 

  • European Commission, Community Health and Consumer Protection (2004) Nanotechnologies: A preliminary risk analysis on the basis of a workshop organized in brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European commission

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentration of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11, 714-719; Correction 712(714): 417 (1978)

    Google Scholar 

  • Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178:115–122

    Article  CAS  Google Scholar 

  • Hoerter JD, Arnold AA, Kuczynska DA, Shibuya A, Ward CS, Sauer MG, Gizachew A, Hotchkiss TM, Fleming TJ, Johson S (2005) Effect of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photoch Photobio B 81:171–180

    Article  CAS  Google Scholar 

  • Hu X, Cook S, Wang P, Hwang H (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232

    Article  CAS  Google Scholar 

  • IARC (2006) Monograph No 2 Titanium dioxide, International Agency of Research on Cancer [cite April 30, 2008]; Available from <http://monographs.iarc.fr/ENG/Meetings/93-titaniumdioxides.pdf>

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue H-J (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubouguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Kim SW, Baek Y-W, An Y-J (2011) Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 92:1045–1052

    Article  CAS  Google Scholar 

  • Le A-T, Tam LT, Tam PD, Huy PT, Huy TQ, Hieu NV, Kudrinskiy AA, Krityakov YA (2010) Synthesis of oleic acid-stabilized silver nanoparticles an analysis of their antibacterial activity. Mat Sci and Eng C 30:910–916

    Article  CAS  Google Scholar 

  • Lee WM, S-W HA, Yang C-Y, Lee J-K, An Y-J (2011) Effect of fluorescent silica nanoparticles in embryo and lara of Oryzias latipes: sonic effect in nanoparticle dispersion. Chem 82:451–459

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga M, Li D, Alarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implication. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24:2757–5262

    Article  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480

    Article  CAS  Google Scholar 

  • Mendelson NH, Keener SL (1982) Clockwise and counterclockwise pinwheel colony morphologies of Bacillus subtilis are correlated with the helix hand of the strain. J Bacteriol 151:455–457

    CAS  Google Scholar 

  • Mendelson NH, Salhi B (1996) Patterns of reporter gene expression in the phase diagram of Bacillus subtilis colony forms. J Bacteriol 178:1980–1989

    CAS  Google Scholar 

  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellualr uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aqua Toxicol 100:140–150

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Li N (2006) Toxic potential of materials at the nanolevel. Sci 311:622

    Article  CAS  Google Scholar 

  • Ordal GW, Parker HM, Kirby JR (1985) Complementation and characterization of chemotaxis mutants of Bacillus subtilis. J Bacteriol 164:802–810

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Dose the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720

    Article  CAS  Google Scholar 

  • Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165:506–510

    Article  CAS  Google Scholar 

  • Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R (2011) Physicochemical characterization an ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    Article  CAS  Google Scholar 

  • Roy AS, Parveen A, Koppalkar AR, Prasad MVNA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomat Nanobiotechnol 1:37–41

    Article  CAS  Google Scholar 

  • Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N (2006) Research strategies for safety evaluation of nanomaterials, Part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32

    Article  CAS  Google Scholar 

  • USEPA (1999a) Dunnett program version 1.5 users' manual. U. S. EPA, Environmental Monitorign Systems Laboratory, Ecological Monitoring Research Division, Cincinnati, Ohio

  • USEPA (1999b) Trimmed Spearman-Karber estimation of lc50 values users' manual. U. S EPA, Office of Research and Development, National Exposure Research Laboratory-Ecosystems Research Division, Center for Exposure Assessment Modeling (CEAM), Athens

    Google Scholar 

  • Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol 188:3099–3109

    Article  CAS  Google Scholar 

  • Wang Z, Lee Y-H, Wu B, Horst A, Kang Y, Tang YJ, Chen D-R (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chem 80:525–529

    Article  CAS  Google Scholar 

  • Wienser MR, Lowry GV, Alarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4337

    Article  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Yang XY, Edelmann RE, Oris JT (2010) Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aqua Toxicol 100:202–210

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnol 20:195103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation Grant funded by the Korean Government (NRF 2009-0079204, NRF-2011-001-5985). The authors thank the Korean Basic Science Institute for electron microscopic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Joo An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.W., An, YJ. Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis . Appl Microbiol Biotechnol 95, 243–253 (2012). https://doi.org/10.1007/s00253-012-4153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4153-6

Keywords

Navigation