Skip to main content
Log in

Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The strain Achromobacter sp. JA81, which produced enoate reductase, was applied in the asymmetric reduction of activated alkenes. The strain could catalyze the bioreduction of alkenes to form enantiopure (R)-β-aryl-β-cyano-propanoic acids, a precursor of (R)-γ-amino butyric acids, including the pharmaceutically active enantiomer of the chiral drug (R)-baclofen with excellent enantioselectivity. It could catalyze as well the stereoselective bioreduction of other activated alkenes such as cyclic imides, β-nitro acrylates, and nitro-alkenes with up to >99 % ee and >99 % conversion. The draft genome sequencing of JA81 revealed six putative old yellow enzyme homologies, and the transcription of one of them, Achr-OYE3, was detected using reverse transcription polymerase chain reaction. The recombinant Escherichia coli expressing Achr-OYE3 displayed enoate reductase activity toward (Z)-3-cyano-3-phenyl-propenoic acid (2a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brenna E, Caraccia N, Fuganti C, Fuganti D, Grasselli P (1997) Enantioselective synthesis of β-substituted butyric acid derivatives via orthoester claisen rearrangement of enzymatically resolved allylic alcohols: application to the synthesis of (R)-(−)-baclofen. Tetrahedron: Asymmetry 8:3801–3805

    Article  CAS  Google Scholar 

  • Brenna E, Gatti FG, Monti D, Parmeggiani F, Sacchetti A (2012) Productivity enhancement of C=C bioreductions by coupling the in situ substrate feeding product removal technology with isolated enzymes. Chem Commun 48:79–81

    Article  CAS  Google Scholar 

  • Dean WD, Blum DM (1993) Condensation of arylacetonitriles with glyoxylic acid. Facile synthesis of arylmaleic acid derivatives. J Org Chem 58:7916–7917

    Article  CAS  Google Scholar 

  • Eixarch H, Constanti M (2010) Biodegradation of mtbe by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival. Process Biochem 45:794–798

    Article  CAS  Google Scholar 

  • Fryszkowska A, Fisher K, Gardiner JM, Stephens GM (2008) Highly enantioselective reduction of β,β-disubstituted aromatic nitroalkenes catalyzed by Clostridium sporogenes. J Org Chem 73:4295–4298

    Article  CAS  Google Scholar 

  • Fryszkowska A, Fisher K, Gardiner JM, Stephens GM (2010) A short, chemoenzymatic route to chiral beta-aryl-gamma-amino acids using reductases from anaerobic bacteria. Org Biomol Chem 8:533–535

    Article  CAS  Google Scholar 

  • Guo Z, Goswami A, Nanduri VB, Patel RN (2001) Asymmetric acyloin condensation catalysed by phenylpyruvate decarboxylase. Part 2: substrate specificity and purification of the enzyme. Tetrahedron: Asymmetry 12:571–577

    Article  CAS  Google Scholar 

  • Hegazy MEF, Shishido K, Hirata T (2006) Asymmetric hydrogenation of the C-C double bond of 1- and 1,2-methylated maleimides with cultured suspension cells of Marchantia polymorpha. Tetrahedron: Asymmetry 17:1859–1862

    Article  CAS  Google Scholar 

  • Leuenberger HGW, Boguth W, Widmer E, Zell R (1976) Synthesis of optically-active natural carotenoids and structurally related compounds. 1. Synthesis of chiral key compound (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone. Helv Chim Acta 59:1832–1849

    Article  CAS  Google Scholar 

  • Li W, Dai Y, Xue B, Li Y, Peng X, Zhang J, Yan Y (2009) Biodegradation and detoxification of endosulfan in aqueous medium and soil by Achromobacter xylosoxidans strain CS5. J Hazard Mater 167:209–216

    Article  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  Google Scholar 

  • Luo F, Lu D, Gong Y (2011) Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. J Mol Catal B: Enzym 70:101–107

    Article  CAS  Google Scholar 

  • Makosza M, Marcinowicz A (2001) Simple synthesis of arylsuccinic acids. Synthesis: 1311–1312

  • Martin NJA, Cheng X, List B (2008) Organocatalytic asymmetric transfer hydrogenation of β-nitroacrylates: accessing β2-amino acids. J Am Chem Soc 130:13862–13863

    Article  CAS  Google Scholar 

  • Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed 17:522–524

    Article  Google Scholar 

  • Ohta H, Kobayashi N, Ozaki K (1989) Asymmetric reduction of nitro olefins by fermenting bakers-yeast. J Org Chem 54:1802–1804

    Article  CAS  Google Scholar 

  • Olpe HR, Demiéville H, Baltzer V, Bencze WL, Koella WP, Wolf P, Haas HL (1978) The biological activity of d-baclofen (lipresal®). Eur J Pharmacol 52:133–136

    Article  CAS  Google Scholar 

  • Ong J, Kerr DI (2000) Recent advances in GABA(B) receptors: from pharmacology to molecular biology. Acta Pharmacologica Sinica 21:111–123

    CAS  Google Scholar 

  • Profitt JA, Watt DS, Corey EJ (1975) Reagent for the alpha, beta reduction of conjugated nitrile. J Org Chem 40:127–128

    Article  CAS  Google Scholar 

  • Rendler S, Oestreich M (2007) Polishing a diamond in the rough: "Cu-H" catalysis with silanes. Angew Chem Int Ed 46:498–504

    Article  CAS  Google Scholar 

  • Shimoda K, Kubota N, Hamada H (2004) Asymmetric reduction of α,β-unsaturated carbonyl compounds with reductases from Nicotiana tabacum. Tetrahedron: Asymmetry 15:2443–2446

    Article  CAS  Google Scholar 

  • Sortino M, Alicia Zacchino S (2010) Efficient asymmetric hydrogenation of the C–C double bond of 2-methyl- and 2,3-dimethyl- N-phenylalkylmaleimides by Aspergillus fumigatus. Tetrahedron: Asymmetry 21:535–539

    Article  CAS  Google Scholar 

  • Sortino MA, Cechinel Filho V, Zacchino SA (2009) Highly enantioselective reduction of the C–C double bond of N-phenyl-2-methyl- and N-phenyl-2,3-dimethyl- maleimides by fungal strains. Tetrahedron: Asymmetry 20:1106–1108

    Article  CAS  Google Scholar 

  • Stueckler C, Winkler CK, Hall M, Hauer B, Bonnekessel M, Zangger K, Faber K (2011) Stereo-controlled asymmetric bioreduction of alpha, beta-dehydroamino acid derivatives. Adv Synth Catal 353:1169–1173

    Article  CAS  Google Scholar 

  • Stuermer R, Hauer B, Hall M, Faber K (2007) Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 11:203–213

    Article  CAS  Google Scholar 

  • Thakur VV, Nikalje MD, Sudalai A (2003) Enantioselective synthesis of (R)-(−)-baclofen via Ru(II)-BINAP catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry 14:581–586

    Article  CAS  Google Scholar 

  • Toogood HS, Gardiner JM, Scrutton NS (2010) Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. Chemcatchem 2:892–914

    Article  CAS  Google Scholar 

  • Wan N, Gu J-D, Yan Y (2007) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int Biodeterior Biodegrad 59:90–96

    Article  CAS  Google Scholar 

  • Warburg O, Christian W (1932) On a new oxidation enzyme and its absorption spectrum. Biochem Z 254:438–458

    CAS  Google Scholar 

  • Williams RE, Bruce NC (2002) 'New uses for an old enzyme'—the old yellow enzyme family of flavoenzymes. Microbiology 148:1607–1614

    CAS  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–245

    Google Scholar 

  • Zhang C, Guangming Z, Li Y, Jian Y, Jianbing L, Guohe H, Beidou X, Hongliang L (2007) Aerobic degradation of bisphenol a by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68:181–190

    Article  CAS  Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Mao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp strain Ch1. Microbiol Res 163:616–623

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (20802073 and 21072183), the 100 Talents Program and the West Light Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Liu Wu.

Additional information

Yan-Jie Liu and Xiao-Qiong Pei contributed equally to this study.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YJ., Pei, XQ., Lin, H. et al. Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase. Appl Microbiol Biotechnol 95, 635–645 (2012). https://doi.org/10.1007/s00253-012-4064-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4064-6

Keywords

Navigation