Skip to main content
Log in

Generation of an actagardine A variant library through saturation mutagenesis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The lantibiotic actagardine A is nineteen amino acids in length and comprises three intertwined C-terminal methyllanthionine-bridged rings and an N-terminal lanthionine-bridged ring. Produced by the actinomycete Actinoplanes garbadinensis ATCC 31049, actagardine A demonstrates antibacterial activity against important Gram-positive pathogens. This activity combined with its ribosomal synthesis makes it an attractive target for the generation of lantibiotic variants with improved biological activity. A variant generation system designed to allow the specific substitution of amino acids at targeted sites throughout the actagardine A peptide has been used to generate a comprehensive library by site-directed mutagenesis. With the exception of residues involved in bridge formation, each amino acid in the actagardine A peptide as well as the alanine (ala(0)) at position −1 relative to the mature peptide, has been systematically substituted with all remaining 19 amino acids. A total of 228 mutants have been engineered with 44 produced in good yield. The mutant V15F in particular demonstrates improved activity against a range of notable Gram-positive pathogens including Clostridium difficile, when evaluated alongside actagardine A. The scope of variants generated provides an insight into the flexibility of the actagardine A processing machinery and will undoubtedly assist in future mutational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Actagardine A was previously designated actagardine; the suffix was introduced in Boakes et al. (2010).

References

  • Appleyard AN, Choi S, Read DM, Lightfoot A, Boakes S, Hoffman A, Chopra I, Bierbaum G, Rudd BAM, Dawson MJ, Cortés J (2009) Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol 16:1–9

    Article  Google Scholar 

  • Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75(17):5451–5460

    Article  CAS  Google Scholar 

  • Boakes S, Cortés J, Appleyard AN, Rudd BAM, Dawson MJ (2009) Organisation of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 72(5):1126–1136

    Article  CAS  Google Scholar 

  • Boakes S, Appleyard AN, Cortés J, Dawson MJ (2010) Organisation of the biosynthetic gene encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. J Antibiot 63(7):351–358

    Article  CAS  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl H-G (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42(1):154–160

    Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discovery 5:321–323

    Article  CAS  Google Scholar 

  • Caetano T, Krawczyk JM, Mösker E, Sϋssmuth RD, Mendo S (2011) Heterologous expression, biosynthesis and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem Biol 18(1):90–100

    Article  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Lad SJ, Phansalkar M, Rupp RH, Ganguli BN (1992) Mersacidin, a new lantibiotic from Bacillus: fermentation, isolation, purification and chemical characterization. J Antibiot 45(6):832–838

    Article  CAS  Google Scholar 

  • Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–683

    Article  CAS  Google Scholar 

  • Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci USA 107(37):16297–16302

    Article  CAS  Google Scholar 

  • Cooper LE, McClerren AL, Chary A, van der Donk WA (2008) Structure–activity relationship studies of the two-component lantibiotic haloduricin. Chem Biol 15:1035–1045

    Article  CAS  Google Scholar 

  • Cotter PD, Deegan LH, Lawton EM, Draper LA, O’Connor PM, Hill C, Ross RP (2006) Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 62(3):735–747

    Article  CAS  Google Scholar 

  • de Jong A, van Heel AJ, Kok J, Kuipers OP (2010) BAGEL2: mining for bacteriocins in genomic data. Nucl Acids Res 38(2):W647–W651

    Article  Google Scholar 

  • Field D, Collins B, Cotter PD, Hill C, Ross RP (2007) A system for the random mutagenesis of the two-peptide lantibiotic lacticin 3147: analysis of mutants producing reduced antibacterial activities. J Mol Microbiol Biotechnol 13:226–234

    Article  CAS  Google Scholar 

  • Field D, Connor PM, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol Microbiol 69:218–230

    Article  CAS  Google Scholar 

  • Fitzgerald NB, English S, Lampel JS, Vanden Boom TJ (1998) Sonication-dependent electroporation of the erythromycin-producing bacterium Saccharopolyspora erythraea. Appl Environ Microbiol 64(4):1580–1583

    CAS  Google Scholar 

  • Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA 107(30):13461–13466

    Article  CAS  Google Scholar 

  • Fuchs SW, Jaskolla TW, Bochmann S, Kötter P, Wichelhaus T, Karas M, Stein T, Entian K-D (2011) Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl Environ Microbiol 77(5):1698–1707

    Article  CAS  Google Scholar 

  • Furgerson Ihnken LA, Chatterjee C, van der Donk WA (2008) In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochem 47:7352–7363

    Article  CAS  Google Scholar 

  • Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF (2004) λ Red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128

    Article  CAS  Google Scholar 

  • Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) σB Modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184(19):5457–5467

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJ, Leenhouts K, Kuipers OP, Moll GN (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and modified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279(21):22176–22182

    Article  CAS  Google Scholar 

  • Levengood MR, Knerr PJ, Oman TJ, van der Donk WA (2009) In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. J Am Chem Soc 131:12024–12025

    Article  CAS  Google Scholar 

  • Majer F, Schmid DG, Altena K, Bierbaum G, Kupke T (2002) The flavoprotein MrsD catalyzes the oxidative decarboxylation reaction involved in formation of the peptidoglycan biosynthesis inhibitor mersacidin. J Bacteriol 184(5):1234–1243

    Article  CAS  Google Scholar 

  • Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochem 43:3049–3056

    Article  CAS  Google Scholar 

  • Nagao J-I, Aso Y, Shioya K, Nakayama J, Sonomoto K (2007) Lantibiotic engineering: molecular characterisation and exploitation of lantibiotic-synthesizing enzymes for peptide engineering. J Mol Microbiol Biotechnol 13:235–242

    Article  CAS  Google Scholar 

  • NCCLS (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. Approved standard guideline M7-A6. Wayne, PA: NCCLS, ISBN: 1-56238-486-4

  • Nishie M, Shioya K, Nagao J, Jikuya H, Sonomoto K (2009) ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. J Biosci Bioeng 108(6):460–464

    Article  CAS  Google Scholar 

  • Ra SR, Qiao M, Immonen T, Pujana I, Saris PEJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactoccocus lactis N8. Microbiol 142:1281–1288

    Article  CAS  Google Scholar 

  • Schmitz S, Hoffman A, Szekat C, Rudd B, Bierbaum G (2006) The lantibiotic mersacidin is an autoinducing peptide. Appl Environ Microbiol 72(11):7270–7277

    Article  CAS  Google Scholar 

  • Stein T, Borchert S, Kiesau P, Heinzmann S, Klöss S, Klein C, Helfrich M, Entian K-D (2002) Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 44(2):403–416

    Article  CAS  Google Scholar 

  • Szekat C, Jack RW, Skutlarek D, Färber H, Bierbaum G (2003) Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 69(7):3777–3783

    Article  CAS  Google Scholar 

  • van Heel AJ, Montalban-Lopez M, Kuipers OP (2011) Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol 7(6):675–680

    Article  Google Scholar 

  • Vértesy L, Aretz W, Bonnefoy A, Ehlers E, Kurz M, Markus A, Schiell M, Vogel M, Wink J, Kogler H (1999) Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048. J Antibiot 52(8):730–741

    Article  Google Scholar 

  • Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci USA 100(7):4316–4321

    Article  CAS  Google Scholar 

  • Zimmerman N, Jung G (1997) The three-dimensional solution structure of the lantibiotic murein-biosynthesis-inhibitor actagardine determined by NMR. Eur J Biochem 246:809–819

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ian Chopra of the University of Leeds for the provision of strains, and we gratefully acknowledge the funding awarded to Novacta Biosystems Ltd by the East of England Development Agency.

Declaration of a conflict of interests

A conflict of interest is declared in that the authors SB, MD and JC are shareholders of Novacta Biosystems Limited, while MD is on the board of directors for Novacta Biosystems Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Boakes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boakes, S., Ayala, T., Herman, M. et al. Generation of an actagardine A variant library through saturation mutagenesis. Appl Microbiol Biotechnol 95, 1509–1517 (2012). https://doi.org/10.1007/s00253-012-4041-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4041-0

Keywords

Navigation