Skip to main content
Log in

High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We succeeded in obtaining a strain adapted to higher temperature from a thermotolerant strain, Gluconobacter frateurii CHM43, for sorbose fermentation. The adapted strain showed higher growth and l-sorbose production than original CHM43 strain at higher temperature around 38.5–40 °C. It was also shown to be useful even with the fermentation without temperature control. To understand the sorbose fermentation ability of the adapted strain at higher temperature, d-sorbitol-oxidizing respiratory chain was compared with the CHM43 strain and the adapted strain. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH), which is a primary dehydrogenase of the respiratory chain and responsible for l-sorbose production, was decreased when the temperature increased, but the decreased activity of GLDH was recovered by the addition of PQQ. Since the adapted strain was found to produce more PQQ than the CHM43 strain, it was suggested that the adapted strain keeps GLDH as holoenzyme with the increased PQQ production, and thus produces more l-sorbose and grows better under higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653

    CAS  Google Scholar 

  • Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Adachi O (1985) Methods of enzymatic determination of pyrroloquinoline quinone. Anal Biochem 151:263–267

    Article  CAS  Google Scholar 

  • Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Takimoto K, Adachi O (1986) Purification and characterization of the quinoprotein d-glucose dehydrogenase apoenzyme from Escherichia coli. Agric Biol Chem 50:49–57

    Article  CAS  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  Google Scholar 

  • Hancock RD (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent Pat Food Nutr Agric 1:39–49

    Article  CAS  Google Scholar 

  • Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188:7668–7676

    Article  Google Scholar 

  • Kulka RG (1956) Colorimetric estimation of ketopentoses and ketohexoses. Biochem J 63:542–548

    CAS  Google Scholar 

  • Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. In: Wood WA (ed) Methods in enzymology, vol 89. Academic, New York, pp 149–153

    Google Scholar 

  • Matsushita K, Ebisuya H, Ameyama M, Adachi O (1992) Change of the terminal oxidase from cytochrome a 1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J Bacteriol 174:122–129

    CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshsino T, Adachi O (2003) 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter sp. Appl Environ Microbiol 69:1959–1966

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: membrane-bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Advances in photosynthesis and respiration, vol 16. Respiration in Archaea and Bacteria. Diversity of prokaryotic respiratory systems. Springer, Dordrecht, The Netherlands pp 81–99

    Google Scholar 

  • Matsutani M, Hirakawa H, Saichana N, Soemphol W, Yakushi T, Matsushita K (2012) Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Microbiology 158(Pt 1):229–239

    Article  CAS  Google Scholar 

  • Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for the activity development in Escherichia coli. Biosci Biotechnol Biochem 66:262–270

    Article  CAS  Google Scholar 

  • Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K (2000) Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem 64:2306–2315

    Article  CAS  Google Scholar 

  • Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K (2002) l-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 66:307–318

    Article  CAS  Google Scholar 

  • Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 61:138–145

    Article  CAS  Google Scholar 

  • Sakuraba H, Yokono K, Yoneda K, Watanabe A, Asada Y, Satomura T, Yabutani T, Motonaka J, Ohshima T (2010) Catalytic properties and crystal structure of quinoprotein aldose sugar dehydrogenase from hyperthermophilic archaeon Pyrobaculum aerophilum. Arch Biochem Biophys 502:81–88

    Article  CAS  Google Scholar 

  • Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548

    Article  CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var.α. Agric Biol Chem 46:135–141

    Article  CAS  Google Scholar 

  • Soemphol W, Adachi O, Matsushita K, Toyama H (2008) Distinct physiological roles of two membrane-bound dehydrogenases responsible for d-sorbitol oxidation in Gluconobacter frateurii. Biosci Biotechnol Biochem 72:842–850

    Article  CAS  Google Scholar 

  • Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, Yamada M, Matsushita K (2011) Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci Biotechnol Biochem 75:1921–1928

    Article  CAS  Google Scholar 

  • Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64

    Article  CAS  Google Scholar 

  • Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580

    Article  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN). We thank Hiroaki Yamamoto for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Matsushita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, H., Yakushi, T., Matsutani, M. et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol 95, 1531–1540 (2012). https://doi.org/10.1007/s00253-012-4005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4005-4

Keywords

Navigation