Skip to main content
Log in

Characterization of the mitochondrial NAD+-dependent isocitrate dehydrogenase of the oleaginous yeast Rhodosporidium toruloides

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Early biochemical studies have demonstrated that lipid accumulation by oleaginous yeasts is linked to the activity of the NAD+-dependent isocitrate dehydrogenase (Idh). However, molecular study of Idh of oleaginous microorganisms remains limited. Here, we present the cloning of a mitochondrial NAD+-specific Idh from Rhodosporidium toruloides (RtIdh), an excellent microbial lipid producer that uses carbohydrates as the carbon source. The evolutionary relationship analyses among RtIdhs and other yeast Idhs revealed that RtIdh had a closer relationship with the Idhs of Ustilago maydis and Schizophyllum commune. We expressed the RtIDH gene in the yeast Saccharomyces cerevisiae idhΔ mutant. Under the nitrogen-limited condition, the intracellular lipid content and extracellular citrate concentration of the culture of the S. cerevisiae idhΔ carrying the RtIDH gene increased as the carbon/nitrogen molar ratio of the media increased, while the wild-type S. cerevisiae strain showed no correlation. Our data provided valuable information for elucidating the molecular mechanism of microbial oleaginicity and for engineering microorganisms to produce metabolites of fatty acid pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson SL, Schirf V, McAlister-Henn L (2002) Effect of AMP on mRNA binding by yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 41:7065–7073

    Article  CAS  Google Scholar 

  • Anderson SL, Lin AP, McAlister-Henn L (2005) Analysis of interactions with mitochondrial mRNA using mutant forms of yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 44:16776–16784

    Article  CAS  Google Scholar 

  • Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J Biosci Bioeng 87:28–36

    Article  CAS  Google Scholar 

  • Asano T, Kurose N, Hiraoka N, Kawakita S (1999) Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash. J Biosci Bioeng 88:258–263

    Article  CAS  Google Scholar 

  • Cupp JR, McAlister-Henn L (1993) Kinetic analysis of NAD+-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry 32:9323–9328

    Article  CAS  Google Scholar 

  • de Jong L, Elzinga SDJ, McCammon MT, Grivell LA, van der Spek H (2000) Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD+)-dependent isocitrate dehydrogenase. FEBS Lett 483:62–66

    Article  Google Scholar 

  • Evans CT, Ratledge C (1984) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14. J Gen Microbiol 130:1705–1710

    CAS  Google Scholar 

  • Evans CT, Ratledge C (1985) The role of the mitochondrial NAD+: isocitrate dehydrogenase in lipid accumulation by the oleaginous yeast Rhodosporidium toruloides CBS 14. Can J Microbiol 31:845–850

    Article  CAS  Google Scholar 

  • Fall R, Phelps P, Spindler D (1984) Bioconversion of xylan to triglycerides by oil-rich yeasts. Appl Environ Microbiol 47:1130–1134

    CAS  Google Scholar 

  • Garcia JA, Minard KI, Lin AP, McAlister-Henn L (2009) Disulfide bond formation in yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 48:8869–8878

    Article  CAS  Google Scholar 

  • Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990

    Article  CAS  Google Scholar 

  • Hu G, McAlister-Henn L (2006) Novel allosteric properties produced by residue substitutions in the subunit interface of yeast NAD+-specific isocitrate dehydrogenase. Arch Biochem Biophys 453:207–216

    Article  CAS  Google Scholar 

  • Hu G, Taylor AB, McAlister-Henn L, Hart PJ (2005) Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:486–488

    Article  Google Scholar 

  • Hu G, Lin AP, McAlister-Henn L (2006) Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 281:16935–16942

    Article  CAS  Google Scholar 

  • Hu CM, Zhao X, Zhao J, Wu SG, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  Google Scholar 

  • Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56:331–338

    Article  CAS  Google Scholar 

  • Li YH, Zhao ZK, Bai FW (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  Google Scholar 

  • Lin AP, McAlister-Henn L (2002) Isocitrate binding at two functionally distinct sites in yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 277:22475–22483

    Article  CAS  Google Scholar 

  • Lin AP, McAlister-Henn L (2003) Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP). J Biol Chem 278:12864–12872

    Article  CAS  Google Scholar 

  • Lin AP, McCammon MT, McAlister-Henn L (2001) Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 40:14291–14301

    Article  CAS  Google Scholar 

  • Lin AP, Hakala KW, Weintraub ST, McAlister-Henn L (2008) Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase. Arch Biochem Biophys 474:205–212

    Article  CAS  Google Scholar 

  • Liu B, Sun Y, Li YH, Zhao ZK (2005) Progress on microbial triacylglyceride biosynthesis and metabolic regulation in oleaginous microorganisms. Acta Microbiol Sin 45:153–156

    CAS  Google Scholar 

  • Morgunov IG, Kamzolova SV, Sokolov AP, Finogenova TV (2004a) The isolation, purification, and some properties of NAD+-dependent isocitrate dehydrogenase from the organic acid-producing yeast Yarrowia lipolytica. Microbiology 73:249–254

    Article  CAS  Google Scholar 

  • Morgunov IG, Solodovnikova NY, Sharyshev AA, Kamzolova SV, Finogenova TV (2004b) Regulation of NAD+-Dependent isocitrate dehydrogenase in the citrate producing yeast Yarrowia lipolytica. Biochem Mosc 69:1391–1398

    Article  CAS  Google Scholar 

  • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1407–1450

    Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  CAS  Google Scholar 

  • Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32:e19

    Article  Google Scholar 

  • Tang W, Zhang S, Wang Q, Tan H, Zhao ZK (2009) The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation. Can J Microbiol 55:1062–1069

    Article  CAS  Google Scholar 

  • Taylor A, Hu G, Hart P, McAlister-Henn L (2008) Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 283:10872

    Article  CAS  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    CAS  Google Scholar 

  • Yang F, Zhang SF, Tang W, Zhao ZK (2008) Identification of the orotidine-5′-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides. Yeast 25:623–630

    Article  Google Scholar 

  • Zhao X, Wu S, Hu C, Wang Q, Hua Y, Zhao ZK (2010) Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol 37:581–585

    Article  CAS  Google Scholar 

  • Zheng JM, Jia ZC (2010) Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase. Nature 465:961–966

    Article  CAS  Google Scholar 

  • Zhou YJ, Yang F, Zhang S, Tan H, Zhao ZK (2011) Efficient gene disruption in Saccharomyces cerevisiae using marker cassettes with long homologous arms prepared by the restriction-free cloning strategy. World J Microbiol Biotechnol 27:2999–3003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports provided by the Natural Sciences Foundation of China (31000052) and the Knowledge Innovation Program of CAS (KSCX2-EW-G-1-3) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbao K. Zhao.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Zhang, S., Zhou, Y.J. et al. Characterization of the mitochondrial NAD+-dependent isocitrate dehydrogenase of the oleaginous yeast Rhodosporidium toruloides . Appl Microbiol Biotechnol 94, 1095–1105 (2012). https://doi.org/10.1007/s00253-011-3820-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3820-3

Keywords

Navigation