Skip to main content
Log in

A hemolytic peptide from the mycophilic fungus Sepedonium chrysospermum (Bull.) Fr.

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The hemolytic activity of an extract of the mycoparasite Sepedonium chrysospermum (teleomorph Hypomyces chrysospermus) was detected and characterized. Extraction of the fungal biomass by methanol yielded a fraction in which the hemolytic activity against human red blood cells corresponded to a peptide with a molecular mass of 7,653.72 Da and an isoelectric point of approximately 5.8. The peptide was temperature resistant, and the hemolysis was only partially inhibited, even after a 30-min pre-incubation at 100°C. Its hemolytic activity was unaffected by treatment with proteolytic enzymes such as trypsin. Among the divalent cations assayed, Hg2+ was the strongest inhibitor of hemolysis. The reducing agent, dithiothreitol, and the membrane lipid, cholesterol, demonstrated concentration-dependent inhibitory activities. Finally, hemolytic activity triggered by the peptide was analyzed by scanning electron microscopy, and a pore-forming activity was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Deen HIS, Twaij HAAA, Al-Badr AA, Istarabad TAW (1987) Toxicologic and histopathologic studies of Pleurotus ostreatus mushroom in mice. J Ethnopharm 21:297–305

    Article  CAS  Google Scholar 

  • Andreeva ZI, Nesterenko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS (2006) Purification and cytolytic properties of Bacillus cereus hemolysin II. Prot Exp Pur 47:186–193

    Article  CAS  Google Scholar 

  • Berne S, Križaj I, Pohleven F, Tuck T, Macěk P, Sepčić K (2002) Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 1570:153–159

    Article  CAS  Google Scholar 

  • Berne S, Lah L, Sepčić K (2009) Aegerolysins: structure, function, and putative biological role. Protein Sci 18:694–706

    CAS  Google Scholar 

  • Chung JJ, Ratnapala LA, Cooke IM, Yanagihara AA (2001) Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 39:981–990

    Article  CAS  Google Scholar 

  • Closse A, Hauser D (1973) Isolation and constitution of crysodine. Helv Chim Acta 56:2694–2698

    Article  CAS  Google Scholar 

  • Don TA, Jones KK, Smyth D, Donoghue P, Hotez P, Loukas A (2004) A pore-forming haemolysin from the hookworm, Ancylostoma caninum. Int J Parasitol 34:1029–1035

    Article  CAS  Google Scholar 

  • Donohue M, Chung Y, Magnuson ML, Ward M, Selgrade MJ, Vesper SJ (2005) Hemolysin, chrysolysin from Penicillium chrysogenum, promotes inflammatory response. Int J Hyg Environ Health 208:279–285

    Article  CAS  Google Scholar 

  • Donohue M, Wei W, Wu J, Zawia NH, Hud N, De Jesus V, Schmechel D, Hettick JM, Beezhold DH, Vesper SJ (2006) Characterization of nigerlysin, hemolysin produced by Aspergillus niger and effect on mouse neuronal cells in vitro. Toxicology 219:150–155

    Article  CAS  Google Scholar 

  • Dornberger K, Ihn W, Ritzau M, Gräfe U, Schlegel B, Fleck WF (1995) Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma Ap 101. J Antibiot 48:977–989

    Article  CAS  Google Scholar 

  • Ebina K, Ichinowatari S, Yokota K, Sakaguchi O (1984) Studies on the toxin of Aspergillus fumigatus XIX. biochemical alteration of sera after Asp-hemolysin inoculation or Aspergillus infection in mice. Jpn J Med Mycol 23:246–252

    Article  Google Scholar 

  • Gams W, Diederich P, Pöldmaa K (2004) Fungicolus Fungi. In: Mueller G, Bills GF, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for fungi. Smithsonian Institution Press, Washington, p 343

    Google Scholar 

  • Han JH, Lee JH, Choi H, Park JH, Choi TJ, Kong IS (2002) Purification, characterization and molecular cloning of Vibrio fluvialis hemolysin. Biochim Biophys Acta 1599:106–114

    CAS  Google Scholar 

  • Han C, Zhang G, Wang H, Ng TB (2010) Schizolysin, a hemolysin from the spilt gill mushroom Schizophyllum commune. FEMS Microbiol Lett 309:115–121

    CAS  Google Scholar 

  • Honda T, Takeda Y, Miwatani T, Kato K, Nimura Y (1976) Clinical features of patients suffering from food poisoning due to Vibrio parahaemolyticus, especially on changes in electrocardiograms. Jpn J Infect Dis 50:216–223

    CAS  Google Scholar 

  • Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ, Christiansen G, Højrup P, Nielsen PH, Otzen DE (2009) Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lam SK, Ng TB (2011) First report of an anti-tumor, anti-fungal, anti-yeast and anti-bacterial hemolysin from Albizia lebbeck seeds. Phytomedicine 18:601–608

    Article  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Pentillä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  CAS  Google Scholar 

  • Malovrh P, Sepĉić K, Turk T, MaĉeK P (1999) Characterization of hemolytic activity of 3-alkylpyridinium polymers from the marine sponge Reniera sarai. Comp Biochem Physiol 124C:221–226

    CAS  Google Scholar 

  • Mitova MI, Stuart BG, Cao GH, Blunt JW, Cole AL, Munro MH (2006) Chrysosporide, a cyclic pentapeptide from a New Zealand sample of the fungus Sepedonium chrysospermum. J Nat Prod 69:1481–1484

    Article  CAS  Google Scholar 

  • Mitova MI, Murphy AC, Lang G, Blunt JW, Cole AL, Ellis G, Munro MH (2008) Evolving trends in the dereplication of natural product extracts. 2. The Isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J Nat Prod 71:1600–1603

    Article  CAS  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  Google Scholar 

  • Nagao K, Yoshida N, Iwai K, Sakai T, Tanaka M, Miyahara T (2006) Production of sepedonin by Sepedonium chrysospermum NT-1 in submerged culture. Environ Sci 13:251–256

    CAS  Google Scholar 

  • Neuhof T, Berg A, Besl H, Schwecke T, Dieckmann, von Döhren H (2007) Peptaibol production by Sepedonium strains parasitizing Boletales. Chem Biodiv 4:1103–1111

    Article  CAS  Google Scholar 

  • Ngai PHK, Ng TB (2006) A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 72:1185–1191

    Article  CAS  Google Scholar 

  • Põldmaa K (2000) Generic delimitation of the fungicolous Hypocreaceae. Stud Mycol 45:83–94

    Google Scholar 

  • Põldmaa K, Farr DF, McCray EB (2011) Hypomyces Online, Systematic Mycology and Microbiology Laboratory. ARS. USDA. Agricultural Research Service. United States Department of Agriculture. Available at http://nt.arsgrin.gov/taxadescriptions/keys/HypomycesIndex.cfm. Accessed 23 Feb 2011

  • Raghuraman H, Chattopadhyay A (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids 134:183–189

    Article  CAS  Google Scholar 

  • Raimondi F, Kao JP, Fiorentini C, Fabbori A, Donelli G, Gaspanni N, Rubino A, Fasano A (2000) Enterotoxicity and cytotoxicity of Vibrio parahemolyticus thermostable direct hemolysin in vitro system. Infect Immun 68:3180–3185

    Article  CAS  Google Scholar 

  • Rementeria A, Lopez-Molina N, Ludwig A, Belen Vivanco A, Bikandi J, Ponton J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23

    Article  Google Scholar 

  • Rogerson CT, Samuels GJ (1989) Boleticolous species of Hypomyces. Mycologia 81:413–432

    Article  Google Scholar 

  • Rözalska M, Szewczyk EM (2008) Staphylococcus cohnii hemolysins—isolation, purification and properties. Folia Microbiol 53:521–526

    Article  Google Scholar 

  • Sahr T, Ammer H, Besl H, Fisher M (1999) Infrageneric classification of the boleticolous genus Sepedonium: species delimitation and phylogenetic relationships. Mycologia 91:935–943

    Article  Google Scholar 

  • Sakaguchi O, Shimida H, Yokota K (1975) Purification and characteristics of hemolytic toxin from Aspergillus fumigatus. Jpn J Med Sci Biol 28:328–331

    CAS  Google Scholar 

  • Sakurai J, Matsuzaki A, Miwatani T (1973) Purification and characterization of thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 8:775–780

    CAS  Google Scholar 

  • Schaufuss P, Müller F, Valentin-Weigand P (2007) Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Vet Microbiol 3–4:342–349

    Article  Google Scholar 

  • Singh RP, Kaur G (2008) Hemolytic activity of aqueous extract of Livistona chinensis fruits. Food Chem Toxicol 46:553–556

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA (2001) Initial characterization of the hemolysin Stachylysin from Stachybotrys chartarum. Infect Immun 69:912–916

    Article  CAS  Google Scholar 

  • Vorum H, Hager H, Christensen BM, Nielsen S, Honoré B (1999) Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 248:473–481

    Article  CAS  Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  Google Scholar 

  • Wright JLC, Mc Innes AG, Smith DG, Vining LC (1970) Structure of sepedonin, a tropolone metabolite of Sepedonium chrysospermum Fries. Can J Chem 48:2702–2708

    Article  CAS  Google Scholar 

  • Žužek MC, Maček P, Sepčić K, Cestnik V, Frangež R (2006) Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus), in rodents. Toxicon 48:264–271

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Hugo Monaco, Paolo Davoli, and Nicola Sitta for the critical reading of the manuscript and helpful suggestions. We thank Cristina Bernini, CNR-Spin, for performing SEM analysis. Research performed towards the Ph.D. in Botany Applied to Agriculture and Environment (University of Genoa, DIPTERIS) was supported by the Ministry of Education, University and Research, by the “Fund for support of youth” (DM 23.10.2003, no. 198), and was devoted to the priority area 9 (Enhancement of typical food and agriculture products and food safety through new methods of characterization and quality assurance).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Sanguineti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanguineti, E., Cosulich, M.E., Salis, A. et al. A hemolytic peptide from the mycophilic fungus Sepedonium chrysospermum (Bull.) Fr.. Appl Microbiol Biotechnol 94, 987–994 (2012). https://doi.org/10.1007/s00253-011-3675-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3675-7

Keywords

Navigation