Skip to main content
Log in

Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol production by recombinant Escherichia coli strain FBR5 from dilute acid pretreated wheat straw (WS) by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid (0.5% H2SO4) pretreated (160 °C, 10 min) and enzymatically saccharified (pH 5.0, 45 °C, 72 h) WS (86 g/l) was 50.0 ± 1.4 g/l. The hydrolyzate contained 1,184 ± 19 mg furfural and 161 ± 1 mg hydroxymethyl furfural per liter. The recombinant E. coli FBR5 could not grow at all at pH controlled at 4.5 to 6.5 in the non-abated wheat straw hydrolyzate (WSH) at 35 °C. However, it produced 21.9 ± 0.3 g ethanol from non-abated WSH (total sugars, 44.1 ± 0.4 g/l) in 90 h including the lag time of 24 h at controlled pH 7.0 and 35 °C. The bioabatement of WS was performed by growing Coniochaeta ligniaria NRRL 30616 in the liquid portion of the pretreated WS aerobically at pH 6.5 and 30 °C for 15 h. The bacterium produced 21.6 ± 0.5 g ethanol per liter in 40 h from the bioabated enzymatically saccharified WSH (total sugars, 44.1 ± 0.4 g) at pH 6.0. It produced 24.9 ± 0.3 g ethanol in 96 h and 26.7 ± 0.0 g ethanol in 72 h per liter from bioabated WSH by batch SSF and fed-batch SSF, respectively. SSF offered a distinct advantage over SHF with respect to reducing total time required to produce ethanol from the bioabated WS. Also, fed-batch SSF performed better than the batch SSF with respect to shortening the time requirement and increase in ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfani A, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192

    Article  CAS  Google Scholar 

  • Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    Article  CAS  Google Scholar 

  • Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38:296–303

    Article  CAS  Google Scholar 

  • Bothast RJ, Saha BC (1997) Ethanol production from agricultural biomass substrates. Adv Appl Microbiol 44:261–286

    Article  CAS  Google Scholar 

  • Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of l-arabinose, d-xylose, and d-glucose by ethanologenic Klebsiella oxytoca strain P2. Biotechnol Lett 16:401–406

    Article  CAS  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentation with new recombinant organisms. Biotechnol Prog 15:867–875

    Article  CAS  Google Scholar 

  • Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–186

    Article  Google Scholar 

  • Dinneen B (2011) 2011 Ethanol Industry Outlook. Renewable Fuels Association, Washington DC

    Google Scholar 

  • Faga BA, Wilkins MR, Banat IM (2010) Ethanol production through simultaneous saccharification and fermentation of switchgrass using S. cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol 101:2773–2779

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GR (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC

    Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Article  CAS  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant N-O, Jonsson LJ (1999) Comparison of different methods for the detoxification of lignocellulosic hydrolyzates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Article  Google Scholar 

  • Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng/Biotechnol 65:93–115

    CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicelluloses hydrolysates. Biotechnol Bioeng 69:526–536

    Article  CAS  Google Scholar 

  • Montane D, Farriol X, Salvado J, Jollez P, Chernet E (1998) Application of steam explosion to the fractionation and rapid vapour-phase alkaline pulping of wheat straw. Biomass Bioenergy 14:261–276

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Guisado GM, López MJ (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121–124:379–390

    Article  Google Scholar 

  • Nichols NN, Sharma LN, Mowery RA, Chambliss CK, van Walsum PG, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb Technol 42:624–630

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Cotta MA (2010) Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol 101:7545–7550

    Article  CAS  Google Scholar 

  • Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hagerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498

    Article  Google Scholar 

  • Ohgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  Google Scholar 

  • Ohta K, Beall DS, Meija JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    Article  CAS  Google Scholar 

  • Olofsson K, Rudolf A, Linden G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolyzates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Pimenova N, Hanley T (2003) Measurement of rheological properties of corn stover suspensions. Appl Biochem Biotechnol 106:383–392

    Article  Google Scholar 

  • Purwadi R, Niklasson C, Taherzadeh MJ (2004) Kinetic study of detoxification of dilute acid hydrolyzates by Ca(OH)2. J Biotechnol 114:187–198

    Article  CAS  Google Scholar 

  • Rudolf A, Alkasrawi M, Zacchi G, Linden GA (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–205

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DC, pp 2–34

    Chapter  Google Scholar 

  • Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    Article  CAS  Google Scholar 

  • Saha BC, Cotta MA (2007) Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol. J Chem Technol Biotechnol 82:913–919

    Article  CAS  Google Scholar 

  • Saha BC, Cotta MA (2011) Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5. Appl Microbiol Biotechnol 90:477–487

    Article  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21:816–822

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TO-510-42618. http://www.nrel.gov/biomass/analytical_procedures.html

  • Tomas-Pejo E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131

    Article  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Gregory J. Kennedy and Sarah E. Frazer for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badal C. Saha.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, B.C., Nichols, N.N., Qureshi, N. et al. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol 92, 865–874 (2011). https://doi.org/10.1007/s00253-011-3600-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3600-0

Keywords

Navigation