Skip to main content

Advertisement

Log in

Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, alteration in morphology of submergedly cultured Antrodia camphorata ATCC 200183 including arthroconidia, mycelia, external and internal structures of pellets was investigated. Two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) were built to optimize the inoculum size and medium components for intracellular triterpenoid production from A. camphorata. Root mean squares error, R 2, and standard error of prediction given by ANN model were 0.31%, 0.99%, and 0.63%, respectively, while RSM model gave 1.02%, 0.98%, and 2.08%, which indicated that fitness and prediction accuracy of ANN model was higher when compared to RSM model. Furthermore, using genetic algorithm (GA), the input space of ANN model was optimized, and maximum triterpenoid production of 62.84 mg l−1 was obtained at the GA-optimized concentrations of arthroconidia (1.78 × 105 ml−1) and medium components (glucose, 25.25 g l−1; peptone, 4.48 g l−1; and soybean flour, 2.74 g l−1). The triterpenoid production experimentally obtained using the ANN–GA designed medium was 64.79 ± 2.32 mg l−1 which was in agreement with the predicted value. The same optimization process may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoid production from A. camphorata and to improve the production of bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida JS (2002) Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol 13:72–76

    CAS  PubMed  Google Scholar 

  • Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF (2009) Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 121:194–212

    PubMed  Google Scholar 

  • Banik RM, Santhiagu A, Upadhyay SN (2007) Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour Technol 98:792–797

    CAS  PubMed  Google Scholar 

  • Baş D, Boyaci İH (2007a) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Google Scholar 

  • Baş D, Boyaci İH (2007b) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78:846–854

    Google Scholar 

  • Bizukojc M, Ledakowica S (2006) A kinetic model to predict biomass content for Aspergillus niger germinating spores in the submerged culture. Process Biochem 41:1063–1071

    CAS  Google Scholar 

  • Bizukojc M, Ledakowica S (2010) The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World J Microbiol Biotechnol 26:41–54

    CAS  Google Scholar 

  • Chang CY, Lee CL, Pan TM (2006) Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures. Appl Microbiol Biotechnol 72:654–661

    CAS  PubMed  Google Scholar 

  • Chen Y, Xie MY, Gong XF (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81:162–170

    CAS  Google Scholar 

  • Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41:266–273

    CAS  Google Scholar 

  • Franco-Lara E, Link H, Weuster-Botz D (2006) Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochem 41:2200–2206

    Article  CAS  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48

    CAS  PubMed  Google Scholar 

  • Gögus N, Tari C, Oncü S, Unluturk S, Tokatli F (2006) Relationship between morphology, rheology and polygalacturonase production by Aspergillus sojae ATCC 20235 in submerged cultures. Biochem Eng J 32:171–178

    Google Scholar 

  • Haykin S (1994) Neural networks. A comprehensive foundation. MacMillan College Publishing Company, New York

    Google Scholar 

  • He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100:250–259

    CAS  PubMed  Google Scholar 

  • Hille A, Neu TR, Hempel DC, Horn H (2009) Effective diffusivities and mass fluxes in fungal biopellets. Biotechnol Bioeng 103:1202–1213

    CAS  PubMed  Google Scholar 

  • Huang J, Mei LH, Xia J (2007) Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol Bioeng 96:924–931

    CAS  PubMed  Google Scholar 

  • Huang GJ, Huang SS, Lin SS, Shao YY, Chen CC, Hou WC, Kuo YH (2010) Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3β-ol from Antrodia camphorata submerged whole broth in mice. J Agric Food Chem 58:7445–7452

    CAS  PubMed  Google Scholar 

  • Kau SW (1992) Studies on triterpenoids from the new species of Taiwan, Ganoderma comphoratum Zang et Su. Dissertation, Taipei Medical University, ROC

  • Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23:456–475

    CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98:1252–1259

    CAS  PubMed  Google Scholar 

  • Lu ZM, Tao WY, Zou XL, Fu HZ, Ao ZH (2007) Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. J Ethnopharmacol 110:160–164

    CAS  PubMed  Google Scholar 

  • Lu ZM, Tao WY, Xu HY, Ao ZH, Xu ZH (2008) Quantitative analysis of triterpenoids from Antrodia camphorata in submerged culture. Chin Trad Pat Med 30:402–405

    CAS  Google Scholar 

  • Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36:747–756

    CAS  PubMed  Google Scholar 

  • Panda BP, Javed S, Ali M (2010) Optimization of fermentation parameters for higher lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus rubber. Food Bioprocess Technol 3:373–378

    CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    CAS  PubMed  Google Scholar 

  • Pirt SJ (1966) A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proc Biol Sci 166:369–373

    CAS  Google Scholar 

  • Rosa SM, Soria MA, Vélez CG, Galvagno MA (2010) Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour Technol 101:2367–2374

    CAS  PubMed  Google Scholar 

  • Shen YC, Chen CF, Wang YH, Chang TT, Chou CJ (2003) Evaluation of the immuno-modulating activity of some active principles isolated from the fruiting bodies of Antrodia camphorata. Chin Pharm J 55:313–318

    CAS  Google Scholar 

  • Shen YC, Wang YH, Chou YC, Chen CF, Lin LC, Chang TT, Tien JH, Chou CJ (2004) Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 70:310–314

    CAS  PubMed  Google Scholar 

  • Shih IL, Pan K, Hsieh CY (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem 41:1129–1135

    CAS  Google Scholar 

  • Singh A, Majumder A, Goyal A (2008) Artifical intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Bioresour Technol 99:8201–8206

    CAS  PubMed  Google Scholar 

  • Singh V, Khan M, Khan S, Tripathi CKM (2009) Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl Microbiol Biotechnol 82:379–385

    CAS  PubMed  Google Scholar 

  • Soria MA, Funes JLG, Garcia AF (2004) A simulation study comparing the impact of experimental error on the performance of experimental design and artificial neural networks used for process screening. J Ind Microbiol Biotechnol 31:469–474

    CAS  PubMed  Google Scholar 

  • Sun MH, Liu XZ (2006) Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents. Mycopathologia 161:295–305

    CAS  PubMed  Google Scholar 

  • Wang CN, Chen JC, Shiao MS, Wang CT (1991) The inhibition of human platelet-function by ganodermic acids. Biochem J 277:189–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WM, Wu RY, Ko WH (2005) Variation and segregation following nuclear transplantation in Antrodia cinnamomea. Bot Bull Acad Sinica 46:217–222

    Google Scholar 

  • Wang X, Xu P, Yuan Y, Liu CL, Zhang DZ, Yang ZT, Yang CY, Ma CQ (2006) Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl Environ Microbiol 72:3367–3374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Pan CL, Yao YC, Chang SS, Li SL, Wu TF (2006) Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics 6:826–835

    CAS  PubMed  Google Scholar 

  • Wu SH, Ryvarden L, Chang TT (1997) Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sinica 38:273–275

    Google Scholar 

  • Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87:457–466

    CAS  PubMed  Google Scholar 

  • Zhang WX, Zhong JJ (2010) Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. J Biosci Bioeng 109:37–40

    CAS  PubMed  Google Scholar 

  • Zhao SS, Leung KS (2010) Quality evaluation of mycelial Antrodia camphorata using high-performance liquid chromatography (HPLC) coupled with diode array detector and mass spectrometry (DAD-MS). Chinese Medicine 5:4

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Natural Science Foundation of Jiangsu Province, China (No. BK2010142) and National High-Tech Program of China (No. 2007AA021506), and the program for New Century Excellent Talents in University of China (No. NCET-07-0380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, ZM., Lei, JY., Xu, HY. et al. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl Microbiol Biotechnol 92, 371–379 (2011). https://doi.org/10.1007/s00253-011-3544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3544-4

Keywords

Navigation