Skip to main content

Advertisement

Log in

Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces tacrolimicus (ATCC 55098) was reported to produce the immunosuppressant tacrolimus. The wild-type strain sporulates sparsely and produces very low levels of this immunosuppressant. The lack of genetic knowledge of this strain has hampered strain improvement. In this work, we have cloned the gene encoding a γ-butyrolactone receptor protein (Gbr). The gbr gene is linked to two genes encoding two subunits of the dihydroxyacetone kinase, putatively involved in the biosynthesis of the dihydroxyacetone phosphate precursor of γ-butyrolactone but is not flanked by γ-butyrolactone synthetase genes. The Gbr protein was overexpressed in Escherichia coli and purified. Electrophoretic mobility shift assays showed that Gbr binds to a specific autoregulatory element sequence located 338 bp upstream of the gbr gene, indicating that its expression is self-regulated. The deletion mutant Δgbr showed a very early and intense sporulation in two different media. A phenotype similar to that of the wild-type strain was restored by complementation of the Δgbr mutant with a wild-type gbr allele. Duplication of the gbr gene resulted in a slower sporulation. The Δgbr mutant produced much lower amount (32%) of tacrolimus quantified by high performance liquid chromatography. This analysis, using an optimised system, allowed the resolution of tacrolimus from ascomycin and other contaminant metabolites. Our results indicate that the Gbr protein regulates negatively the sporulation and positively the production of tacrolimus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arndt C, Cruz MC, Cardenas ME, Heitman J (1999) Secretion of FK506/FK520 and rapamycin by Streptomyces inhibits the growth of competing Saccharomyces cerevisiae and Cryptococcus neoformans. Microbiology 145:1989–2000

    Article  CAS  Google Scholar 

  • Aroonsri A, Kitani S, Choi SU, Nihira T (2008) Isolation and characterization of bamA genes, homologues of the gamma-butyrolactone autoregulator-receptor gene in Amycolatopsis mediterranei, a rifamycin producer. Biotechnol Lett 30(11):2019–2024

    Article  CAS  Google Scholar 

  • Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  CAS  Google Scholar 

  • Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF (2004) SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51(6):1615–1628

    Article  CAS  Google Scholar 

  • Bunet R, Mendes MV, Rouhier N, Pang X, Hotel L, Leblond P, Aigle B (2008) Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190(9):3293–3305

    Article  CAS  Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34(2):171–198

    Article  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinosita H, Nihira T (2003) γ-Butyrolactone autoregulators and receptor proteins in non-Streptomyces actinomycetes producing commercially important secondary metabolites. Arch Microbiol 180:303–307

    Article  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298

    Article  CAS  Google Scholar 

  • Choi SU, Kim MK, Ha HS, Hwang YI (2008) In vivo functions of the gamma-butyrolactone autoregulator receptor in Streptomyces ambofaciens producing spiramycin. Biotechnol Lett 30(5):891–897

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  • Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 81:2035–2039

    Article  CAS  Google Scholar 

  • Dumont F., Garrity GM, Fernandez IM, Matas TD (1992) Process for producing FK506. United States Patent, Patent Number 5, 116, 756

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155(2):223–229

    Article  CAS  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276(47):44297–44306

    Article  CAS  Google Scholar 

  • Gómez-Escribano JP, Martín JF, Hesketh A, Bibb MJ, Liras P (2008) Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. Microbiology 154(3):744–755

    Article  Google Scholar 

  • Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285(19):14292–14300

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  Google Scholar 

  • Hara H, Ohnishi Y, Horinouchi S (2009) DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiology 155(7):2197–2210

    Article  CAS  Google Scholar 

  • Havlis J, Thomas H, Sebela M, Shevchenko A (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75:1300–1306

    Article  CAS  Google Scholar 

  • Healy FG, Eaton KP, Limsirichai P, Aldrich JF, Plowman AK, King RR (2009) Characterization of gamma-butyrolactone autoregulatory signaling gene homologs in the angucyclinone polyketide WS5995B producer Streptomyces acidiscabies. J Bacteriol 191(15):4786–4797

    Article  CAS  Google Scholar 

  • Higgens CE, Hamill RL, Sands TH, Hoehn MM, Davis NE (1974) The occurrence of deacetoxycephalosporin C in fungi and streptomycetes. J Antibiot 27(4):298–300

    CAS  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine. Oxford University Press, New York

    Google Scholar 

  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 71(2):283–299

    Article  CAS  Google Scholar 

  • Horinouchi S, Beppu T (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad 83:277–295

    Article  CAS  Google Scholar 

  • Iafolla MA, Mazumder M, Sardana V, Velauthapillai T, Pannu K, McMillen DR (2008) Dark proteins: effect of inclusion body formation on quantification of protein expression. Proteins 72(4):1233–1242

    Article  CAS  Google Scholar 

  • Kato JY, Suzuki A, Yamazaki H, Ohnishi Y, Horinouchi S (2002) Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol 184:6016–6025

    Article  CAS  Google Scholar 

  • Kato JY, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci U S A 104(7):2378–2383

    Article  CAS  Google Scholar 

  • Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MC (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34(3):e20

    Article  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwick

    Google Scholar 

  • Kinoshita H, Tsuji T, Ipposhi H, Nihira T, Yamada Y (1999) Characterization of binding sequences for butyrolactone autoregulator receptors in Streptomycetes. J Bacteriol 181(16):5075–5080

    CAS  Google Scholar 

  • Kitani S, Kinoshita H, Nihira T, Yamada Y (1999) In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J Bacteriol 181(16):5081–5084

    CAS  Google Scholar 

  • Kitani S, Yamada Y, Nihira T (2001) Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183:4357–4363

    Article  CAS  Google Scholar 

  • Kitani S, Hoshika M, Nihira T (2008) Disruption of sscR encoding a gamma-butyrolactone autoregulator receptor in Streptomyces scabies NBRC 12914 affects production of secondary metabolites. Folia Microbiol (Praha) 53(2):115–124

    Article  CAS  Google Scholar 

  • Kumar CV, Coque JJ, Martín JF (1994) Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60(11):4086–4093

    CAS  Google Scholar 

  • Lee KM, Lee CK, Choi SU, Park HR, Kitani S, Nihira T, Hwang YI (2005) Cloning and in vivo functional analysis by disruption of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces natalensis. Arch Microbiol 184(4):249–257

    Article  CAS  Google Scholar 

  • Li W, Liu G, Tan H (2003) Disruption of sabR affects nikkomycin biosynthesis and morphogenesis in Streptomyces ansochromogenes. Biotechnol Lett 25:1491–1497

    Article  CAS  Google Scholar 

  • Martín JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Ann Rev Microbiol 43:173–206

    Article  Google Scholar 

  • Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273

    Article  Google Scholar 

  • Martínez-Castro M, Solera E, Martín JF, Barreiro C (2009) Efficient pyramidal arrangement of an ordered cosmid library: rapid screening of genes of the tacrolimus-producer Streptomyces sp. ATCC 55098. J Microbiol Methods 78(2):150–154

    Article  Google Scholar 

  • Martínez-Castro M, Barreiro C, Romero F, Fernández-Chimeno RI, Martín JF (2011) Streptomyces tacrolimicus sp. nov. a low producer of the immunosuppressant FK506. Int J Syst Evol Microbiol 61(Pt 5):1084–1088

    Article  Google Scholar 

  • Mehra S, Charaniya S, Takano E, Hu WS (2008) A bistable gene switch for antibiotic biosynthesis: the butyrolactone regulon in Streptomyces coelicolor. PLoS One 3(7):e2724

    Article  Google Scholar 

  • Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133(4):976–985

    Article  CAS  Google Scholar 

  • Nakano H, Takehara E, Nihira T, Yamada Y (1998) Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180:3317–3322

    CAS  Google Scholar 

  • Nakano H, Lee CK, Nihira T, Yamada Y (2000) A null mutant of the Streptomyces virginiae barA gene encoding a butyrolactone autoregulator receptor and its phenotypic and transcriptional analysis. J Biosci Bioeng 90(2):204–207

    CAS  Google Scholar 

  • Natsume R, Ohnishi Y, Senda T, Horinouchi S (2004) Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336(2):409–419

    Article  CAS  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    CAS  Google Scholar 

  • Onaka H, Nakagawa T, Horinouchi S (1998) Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28(4):743–753

    Article  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  CAS  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    Article  CAS  Google Scholar 

  • Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12(1–2):139–146

    Article  CAS  Google Scholar 

  • Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Delta phoP mutant. Proteomics 7(14):2410–2429

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santamarta I, Pérez-Redondo R, Lorenzana LM, Martín JF, Liras P (2005) Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatory ccaR gene of Streptomyces clavuligerus. Mol Microbiol 56(3):824–835

    Article  CAS  Google Scholar 

  • Stratigopoulos G, Gandecha AR, Cundliffe E (2002) Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced gamma-butyrolactone receptor. Mol Microbiol 45(3):735–744

    Article  CAS  Google Scholar 

  • Sugiyama M, Onaka H, Nakagawa T, Horinouchi S (1998) Site-directed mutagenesis of the A-factor receptor protein: Val-41 important for DNA-binding and Trp-119 important for ligand-binding. Gene 222:133–144

    Article  CAS  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  CAS  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactones SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  Google Scholar 

  • Unniraman S, Prakash R, Nagaraja V (2002) Conserved economics of transcription termination in eubacteria. Nucleic Acids Res 30(3):675–684

    Article  CAS  Google Scholar 

  • Vicente CM, Santos-Aberturas J, Guerra SM, Payero TD, Martín JF, Aparicio JF (2009) PimT, an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis. Microb Cell Fact 8:33

    Article  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448

    Article  CAS  Google Scholar 

  • Yamada Y (1999) Autoregulatory factors and regulation of antibiotic production in Streptomyces. In: England R, Hobbs G, Bainton N, McRoberts DL (eds) Microbial signalling and communication. Society for General Microbiology, Cambridge University Press, Cambridge, pp 177–196

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the CICYT Ministry of Innovation and Science (Madrid, Spain) [BIO2006-14853-C02-01 (CONSOLIDER)]. C. Barreiro was supported by the Program ‘Personal Técnico de Apoyo’ of the Ministry of Science and Innovation of Spain and the European Social Fund (ESF) (PTA-2003-01-00689). M. Martínez-Castro received a PFU fellowship from the Ministry of Education and Science and E. Solera received a PFI fellowship from the Ministry of Education and Science. We acknowledge the kind technical assistance of A. Rodríguez-García and S. Albillos and the excellent technical support of B. Martín, J. Merino, A. Casenave and A. Mulero (INBIOTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Degenerated primers used for amplification of the γ-butyrolactone receptor gene of S. tacrolimicus. a Alignment of nucleotide sequences of γ-butyrolactone receptors from different strains. Star symbols indicate identical nucleotides. Conserved regions are indicated by black boxes. The nucleotide regions which are identity-conserved (70–80%) are indicated by grey boxes. Arrows represent the regions used to design primers. Γ-Butyrolactone receptors which were used for alignment are farA of S. lavendulae, sngR of S. natalensis, scbR of S. coelicolor A3(2), barA of S. virginiae, tarA of S. tendae, srrA of S. rochei, brp of S. clavuligerus, avaR of S. avermitilis, spbR of S. pristinaespiralis and tylP of S. fradiae. b PCR products obtained using degenerated primers GbrE-1 and GbrE-3. The arrowhead shows the 150-bp band corresponding to the gbr gene (PDF 95 kb)

Supplementary Figure S2

Secondary structure of transcriptional terminators present in the 8,722-bp region surrounding the gbr gene based on the ΔG value (Unniraman et al. 2002). DHK2 is an abbreviation of ‘dihydroxyacetone kinase subunit 2’ (PDF 37 kb)

Supplementary Figure S3

Expression of the GST–Gbr fusion protein at different concentrations of LB. a Decrease of LB concentration until 4 g l−1 results in a larger amount of soluble GST–Gbr fusion protein. M Precision Plus Protein standard (Bio-Rad), S soluble phase, P pellet phase. b SDS-PAGE analysis of different fractions of purified GST–Gbr fusion protein after affinity chromatography in comparison with crude extract of the cells without IPTG (negative control) and crude extract of the cells containing IPTG (positive control). M Precision Plus Protein standard, A expressed protein in the absence of IPTG, B expressed proteins before elution using FPLC. The arrowhead indicates the band of the protein (PDF 366 kb)

Supplementary Figure S4

Lack of binding of purified Gbr protein to the GbrE-2 region. Electrophoretic mobility shift assays was done using the promoter region named GbrE-2, which includes the A–T-rich region located 70 bp upstream of the translation start codon of gbr (see Fig. 2) (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi-Najafabadi, Z., Barreiro, C., Martínez-Castro, M. et al. Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Appl Microbiol Biotechnol 92, 971–984 (2011). https://doi.org/10.1007/s00253-011-3466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3466-1

Keywords

Navigation