Skip to main content

Advertisement

Log in

Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berdie L, Grimalt JO, Gjessing ET (1995) Hydrocarbons, alcohols and sterols in the dissolved + colloidal and particulate phases of the waters from a dystrophic lake, Skjervatjern lake (Norway). Water Res 29:2017–2030

    CAS  Google Scholar 

  • Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grötzschel S, Köster J, Abed RMM, De Beer D (2002) Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation 13:273–283

    PubMed  Google Scholar 

  • Hamamura N, Fukui M, Ward DM, Inskeep WP (2008) Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Env Sci Tec 42:7580–7586

    CAS  Google Scholar 

  • Han J, Calvin M (1969) Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. P Natl Acad Sci USA 64:436–443

    CAS  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    CAS  PubMed  Google Scholar 

  • Heiss-Blanquet S, Benoit Y, Maréchaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–1403

    CAS  PubMed  Google Scholar 

  • Hornafius J, Quigley D, Luyendyk B (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res-Oceans 104:20703–20711

    CAS  Google Scholar 

  • Jacquot F, Le Dréau Y, Doumenq P, Munoz D, Guiliano M, Imbert G, Mille G (1999) The origins of hydrocarbons trapped in the Lake of Berre sediments. Chemosphere 39:1407–1419

    CAS  Google Scholar 

  • Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR hybridization. J Microbiol Methods 66:486–496

    CAS  PubMed  Google Scholar 

  • Kok M, Oldenhuis R, van der Linden MPG, Raatjes P, Kingma J, van Lelyveld PH et al (1989) The Pseudomonas oleovorans alkane hydroxylase gene, sequence and expression. J Biol Chem 264:5435–5441

    CAS  PubMed  Google Scholar 

  • Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Environ Microbiol 11:669–673

    CAS  PubMed  Google Scholar 

  • Li L, Liu X, Yang W, Xu F, Wang W, L Feng et al (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465

    CAS  PubMed  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2004) Crystallographic trapping of a precatalytic enzyme complex provides new insight into dioxygen activation at a mononuclear copper center. Crit Rev Bioch Mol Biol 39:147–164

    CAS  Google Scholar 

  • Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp strain M-1. J Bacteriol 178:3695–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez MC, Ventosa A (2005) Marinobacter hydrocarbonoclasticus (Gauthier 1992) and Marinobacter aquaeolei (Nguyen et al. 1999) are heterotypic synonyms. Int J Syst Evol Microbio 55:1349–1351

    Google Scholar 

  • Navarrete A, Urmeneta J, Cantu JM, Vegas E, White DC, Guerrero R (2004) Signature lipid biomarkers of microbial mats of the EbroDelta (Spain), Camargue and Etang de Berre (France): an assessment of biomass and activity. Ophelia 58:175–188

    Google Scholar 

  • Païssé S, Coulon F, Goñi-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    PubMed  Google Scholar 

  • Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microbial Ecol 60:394–405

    Google Scholar 

  • Palmroth MRT, Koskinen PEP, Kaksonen AH, Münster U, Pichtel J, Puhakka JA (2007) Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Biodegradation 18:769–782

    CAS  PubMed  Google Scholar 

  • Sariaslani FS, Omer CA (1992) Actinomycete cytochrme P-450 involved in oxidative metabolism: biochemistry and molecular biology. Crit Rev Plant Sci 11:1–16

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2008) A statistical toolbox for metagenomics: assessing functional diversity in microbial communities. BMC Bioinforma 9:34

    Google Scholar 

  • Seewald J (2003) Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333

    CAS  PubMed  Google Scholar 

  • Sei K, Mori K, Kohno T, Maki H (2003) Development and application of PCR primers for monitoring alkane-degrading bacteria in seawater microcosm during crude oil degradation process. J Chem Eng Jpn 36:1185–1193

    CAS  Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–318

    CAS  PubMed  Google Scholar 

  • Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    PubMed  Google Scholar 

  • Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:353–360

    CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    CAS  PubMed  Google Scholar 

  • van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    PubMed  Google Scholar 

  • van Beilen J, Panke S, Lucchini S, Franchini A, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    PubMed  Google Scholar 

  • van Beilen JB, Smits THM, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser K-H, Witholt B (2002) Alkane hydroxylase homologues in Gram-positives strains. Environ Microb 4:676–682

    Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil & Gas Sci Technol 58:427–440

    Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M et al (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    PubMed  PubMed Central  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microb 89:339–348

    CAS  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010a) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    CAS  PubMed  Google Scholar 

  • Wang W, Wang L, Shao Z (2010b) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60:429–439

    PubMed  Google Scholar 

  • Whyte LG, Greer CW, Inniss WE (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol 42:99–106

    CAS  PubMed  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari VH, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  PubMed  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotech 12:259–276

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham W-R, Luensdorf H, Golyshin PN et al (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbio 54:141–148

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Community Project FACEiT [(STREP-grant no. 018391 (GOCE)]. We would like to thank all partners of the FACEiT project for their useful discussions. We acknowledge the financial support by the Aquitaine Regional Government Council (France), the Ministère de l’Ecologie et du Développement Durable (MEDD-PNETOX project no. CV04000147), and the ANR (DHYVA project, no. 06SEST09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Duran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paisse, S., Duran, R., Coulon, F. et al. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?. Appl Microbiol Biotechnol 92, 835–844 (2011). https://doi.org/10.1007/s00253-011-3381-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3381-5

Keywords

Navigation