Skip to main content

Advertisement

Log in

Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of the bacteriophage-encoded peptidoglycan hydrolases (endolysins) to destroy Gram-positive bacteria from without makes these enzymes promising antimicrobials. Recombinant endolysins from Listeria monocytogenes phages have been shown to rapidly lyse and kill the pathogen in all environments. To determine optimum conditions regarding application of recombinant Listeria phage endolysins in food or production equipments, properties of different Listeria endolysins were studied. Optimum NaCl concentration for the amidase HPL511 was 200 nM and 300 mM for the peptidases HPL118, HPL500, and HPLP35. Unlike most other peptidoglycan hydrolases, all four enzymes exhibited highest activity at elevated pH values at around pH 8–9. Lytic activity was abolished by EDTA and could be restored by supplementation with various divalent metal cations, indicating their role in catalytic function. While substitution of the native Zn2+ by Ca2+ or Mn2+ was most effective in case of HPL118, HPL500, and HPLP35, supplementation with Co2+ and Mn2+ resulted in an approximately 5-fold increase in HPL511 activity. Interestingly, the glutamate peptidases feature a conserved SxHxxGxAxD zinc-binding motif, which is not present in the amidases, although they also require centrally located divalent metals for activity. The endolysins HPL118, HPL511, and HPLP35 revealed a surprisingly high thermostability, with up to 35% activity remaining after 30 min incubation at 90°C. The available data suggest that denaturation at elevated temperatures is reversible and may be followed by rapid refolding into a functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191

    Article  CAS  Google Scholar 

  • Bernhardt TG, Wang IN, Struck DK, Young R (2002) Breaking free: “protein antibiotics” and phage lysis. Res Microbiol 153:493–501

    Article  CAS  Google Scholar 

  • Briers Y, Lavigne R, Plessers P, Hertveldt K, Hanssens I, Engelborghs Y, Volckaert G (2006) Stability analysis of the bacteriophage phiKMV lysin gp36C and its putative role during infection. Cell Mol Life Sci 63:1899–1905

    Article  CAS  Google Scholar 

  • Briers Y, Miroshnikov K, Chertkov O, Nekrasov A, Mesyanzhinov V, Volckaert G, Lavigne R (2008) The structural peptidoglycan hydrolase gp181 of bacteriophage phiKZ. Biochem Biophys Res Commun 374:747–751

    Article  CAS  Google Scholar 

  • Cheng Q, Fischetti VA (2006) Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Appl Microbiol Biotechnol 74:1284–1291

    Article  Google Scholar 

  • Claperon C, Rozenfeld R, Iturrioz X, Inguimbert N, Okada M, Roques B, Maigret B, Llorens-Cortes C (2008) Asp218 participates with Asp213 to bind a Ca2+ atom into the S1 subsite of aminopeptidase A: a key element for substrate specificity. Biochem J 416:37–46

    Article  CAS  Google Scholar 

  • Danielsen EM, Noren O, Sjostrom H, Ingram J, Kenny AJ (1980) Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms. Biochem J 189:591–603

    CAS  Google Scholar 

  • Donovan DM, Lardeo M, Foster-Frey J (2006) Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett 265:133–139

    Article  CAS  Google Scholar 

  • Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol 191:7206–7215

    Article  CAS  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  Google Scholar 

  • Fiedler F, Ruhland G (1987) Structure of Listeria monocytogenes cell walls. Bull Inst Pasteur 85:287–300

    CAS  Google Scholar 

  • Fiedler F, Seger J, Schrettenbrunner A, Seeliger HPR (1984) The biochemistry of murein and cell wall teichoic acids in the genus Listeria. Syst Appl Microbiol 5:360–376

    CAS  Google Scholar 

  • Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    Article  CAS  Google Scholar 

  • Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362

    Article  CAS  Google Scholar 

  • Fukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J (2007) Characterization of new L, D-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol Genet Genomics 278:371–383

    Article  CAS  Google Scholar 

  • Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958

    Article  CAS  Google Scholar 

  • Garcia P, Martinez B, Rodriguez L, Rodriguez A (2010) Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol 141:151–155

    Article  CAS  Google Scholar 

  • Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  CAS  Google Scholar 

  • Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1:94–100

    Article  Google Scholar 

  • Hagens S, Loessner MJ (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 76:513–519

    Article  CAS  Google Scholar 

  • Hermoso JA, Garcia JL, Garcia P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461–472

    Article  CAS  Google Scholar 

  • Korndoerfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ (2006) The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. J Mol Biol 364:678–689

    Article  CAS  Google Scholar 

  • Korndoerfer IP, Kanitz A, Danzer J, Zimmer M, Loessner MJ, Skerra A (2008) Structural analysis of the L-alanoyl-D-glutamate endopeptidase domain of Listeria bacteriophage endolysin Ply500 reveals a new member of the LAS peptidase family. Acta Crystallogr D Biol Crystallogr 64:644–650

    Article  Google Scholar 

  • Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) High affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73:1992–2000

    Google Scholar 

  • Kyomuhendo P, Myrnes B, Nilsen IW (2007) A cold-active salmon goose-type lysozyme with high heat tolerance. Cell Mol Life Sci 64:2841–2847

    Article  CAS  Google Scholar 

  • Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G (2004) Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci 61:2753–2759

    Article  CAS  Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  Google Scholar 

  • Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204

    Article  CAS  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  Google Scholar 

  • Loessner MJ, Schneider A, Scherer S (1995a) A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol 61:1150–1152

    CAS  Google Scholar 

  • Loessner MJ, Wendlinger G, Scherer S (1995b) Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16:1231–1241

    Article  CAS  Google Scholar 

  • Loessner MJ, Schneider A, Scherer S (1996) Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol 62:3057–3060

    CAS  Google Scholar 

  • Loessner MJ, Kramer K, Ebel F, Scherer S (2002) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44:335–349

    Article  CAS  Google Scholar 

  • Low LY, Yang C, Perego M, Osterman A, Liddington RC (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280:35433–35439

    Article  CAS  Google Scholar 

  • McCafferty DG, Lessard IA, Walsh CT (1997) Mutational analysis of potential zinc-binding residues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry 36:10498–10505

    Article  CAS  Google Scholar 

  • Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA (2009) Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5. FEBS J 276:7329–7342

    Article  CAS  Google Scholar 

  • Morita M, Tanji Y, Mizoguchi K, Soejima A, Orito Y, Unno H (2001) Antibacterial activity of Bacillus amyloliquefaciens phage endolysin without holin conjugation. J Biosci Bioeng 91:469–473

    CAS  Google Scholar 

  • Murzin AG (1996) Structural classification of proteins: new superfamilies. Curr Opin Struct Biol 6:386–394

    Article  CAS  Google Scholar 

  • Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112

    Article  CAS  Google Scholar 

  • Pritchard DG, Dong S, Baker JR, Engler JA (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150:2079–2087

    Article  CAS  Google Scholar 

  • Sambrook J, Maniatis J, Fritsch EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  Google Scholar 

  • Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76:5745–5756

    Article  CAS  Google Scholar 

  • Schmelcher M, Tchang VS, Loessner MJ (2011) Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb Biotechnol. doi:10.1111/j.1751-7915.2011.00263.x

  • Schmitz JE, Ossiprandi MC, Rumah KR, Fischetti VA (2011) Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl Microbiol Biotechnol 89:1783–1795. doi:10.1007/s00253-010-2982-8

    Article  CAS  Google Scholar 

  • Shida T, Hattori H, Ise F, Sekiguchi J (2001) Mutational analysis of catalytic sites of the cell wall lytic N-acetylmuramoyl-L-alanine amidases CwlC and CwlV. J Biol Chem 276:28140–28146

    Article  CAS  Google Scholar 

  • Sugahara K, Yokoi KJ, Nakamura Y, Nishino T, Yamakawa A, Taketo A, Kodaira KI (2007) Mutational and biochemical analyses of the endolysin Lys(gaY) encoded by the Lactobacillus gasseri JCM 1131(T) phage phigaY. Gene 404:41–52

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Turner MS, Waldherr F, Loessner MJ, Giffard PM (2006) Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst Appl Microbiol 30:58–67

    Article  Google Scholar 

  • Vanderzant C, Splittstoesser DF (1992) Compendium of methods for the microbiological examination of foods, 3rd edn. APHA, Washington

    Google Scholar 

  • Vasala A, Valkkila M, Caldentey J, Alatossava T (1995) Genetic and biochemical characterization of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H lysin. Appl Environ Microbiol 61:4004–4011

    CAS  Google Scholar 

  • Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  CAS  Google Scholar 

  • Wendlinger G, Loessner MJ, Scherer S (1996) Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985–992

    Article  CAS  Google Scholar 

  • Yoong P, Schuch R, Nelson D, Fischetti VA (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812

    Article  CAS  Google Scholar 

  • Yoong P, Schuch R, Nelson D, Fischetti VA (2006) PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol 188:2711–2714

    Article  CAS  Google Scholar 

  • Young I, Wang I, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Sabina Anklin and Sylvia Pruksa for their contribution to this work and thank Monique Herensperger and the late Ursula Schuler for their excellent technical assistance. This study was partially supported by the WWTF, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Loessner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmelcher, M., Waldherr, F. & Loessner, M.J. Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Appl Microbiol Biotechnol 93, 633–643 (2012). https://doi.org/10.1007/s00253-011-3372-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3372-6

Keywords

Navigation