Skip to main content

Advertisement

Log in

Features and applications of bacterial sialidases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrashev I, Dulguerova G, Dolashka-Angelova P, Voelter W (2005) Purification and characterization of a novel sialidase from a strain of Arthrobacter nicotianae. J Biochem 137:365–371

    Article  CAS  PubMed  Google Scholar 

  • Aisaka K, Igarashi A, Uwajima T (1991) Purification, crystallization, and characterization of neuraminidase from Micromonospora viridifaciens. Agric Biol Chem 55:997–1004

    CAS  Google Scholar 

  • Ajisaka H, Fujimoto H, Isomura M (1994) Regioselective transglycosylation in the synthesis of oligosaccharide: comparison of β-galactosidases and sialidases of various origin. Carbohydr Res 259:103–115

    Article  CAS  PubMed  Google Scholar 

  • Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625

    Article  CAS  PubMed  Google Scholar 

  • Berry AM, Lock RA, Paton JC (1996) Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J Bacteriol 178:4854–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boraston AB, Ficko-Blean E, Healey M (2007) Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry 46:11352–11360

    Article  CAS  PubMed  Google Scholar 

  • Bork K, Horstkorte R, Weidemann W (2009) Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway. J Pharm Sci 98:3499–3508

    Article  CAS  PubMed  Google Scholar 

  • Bragonzi A, Distefano G, Buckberry LD, Acerbis G, Foglieni C, Lamotte D, Campi G, Marc A, Soria MR, Jenkins N, Monaco L (2000) A new Chinese hamster ovary cell line expressing α2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim Biophys Acta 1474:273–282

    Article  CAS  PubMed  Google Scholar 

  • Burnaugh AM, Frantz LJ, King SJ (2008) Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190:221–230

    Article  CAS  PubMed  Google Scholar 

  • Buschiazzo A, Alzari PM (2008) Structural insight into sialic acid enzymology. Curr Opin Chem Biol 12:565–572

    Article  CAS  PubMed  Google Scholar 

  • Cámara M, Boulnois GJ, Andrew PW, Mitchell TJ (1994) A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect Immun 62:3688–3695

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien CH, Shann YJ, Sheu SY (1996) Site-directed mutations of the catalytic and conserved amino acids of the neuraminidase gene, nanH, of Clostridium perfringens ATCC 10543. Enzyme Microb Technol 19:267–276

    Article  CAS  PubMed  Google Scholar 

  • Corfield AP, Higa H, Paulson JC, Schauer R (1983) The specificity of viral and bacterial sialidases for α(2–3)- and α(2–6)-linked sialic acids in glycoproteins. Biochim Biophys Acta 744:121–126

    Article  CAS  PubMed  Google Scholar 

  • Crennell SJ, Garman EF, Laver WG, Vimr ER, Taylor GL (1993) Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci USA 90:9852–9856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crennell S, Garman E, Laver G, Vimr E, Taylor G (1994) Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2:535–544

    Article  CAS  PubMed  Google Scholar 

  • Crout DHG, Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol 2:98–111

    Article  CAS  PubMed  Google Scholar 

  • Estrella RP, Whitelock JM, Roubin RH, Packer NH, Karlsson NG (2009) Small-scale enzymatic digestion of glycoproteins and proteoglycans for analysis of oligosaccharides by LC-MS and FACE gel electrophoresis. Methods Mol Biol 534:171–192

    CAS  PubMed  Google Scholar 

  • Gaskell A, Crennell S, Taylor G (1995) The three domains of a bacterial sialidase: a β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Grobe K, Sartori B, Traving C, Schauer R, Roggentin P (1998) Enzymatic and molecular properties of the Clostridium tertium sialidase. J Biochem 124:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Gut H, King SJ, Walsh MA (2008) Structural and functional studies of Streptococcus pneumoniae neuraminidase B: an intramolecular trans-sialidase. FEBS Lett 582:3348–3352

    Article  CAS  PubMed  Google Scholar 

  • Heuermann D, Roggentin P, Kleineidam RG, Schauer R (1991) Purification and characterization of a sialidase from Clostridium chauvoei NC08596. Glycoconj J 8:95–101

    Article  CAS  PubMed  Google Scholar 

  • Hoyer LL, Roggentin P, Schauer R, Vimr ER (1991) Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus-typical kinetic preference for sialyl α2 → 3 linkages. J Biochem 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YS, Parker D, Ratner AJ, Prince A, Tong L (2009) Crystal structures of respiratory pathogen neuraminidases. Biochem Biophys Res Commun 380:467–471

    Article  CAS  PubMed  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  CAS  PubMed  Google Scholar 

  • Iwamori M, Ohta Y, Uchida Y, Tsukada Y (1997) Arthrobacter ureafaciens sialidase isoenzymes, L, M1 and M2, cleave fucosyl GM1. Glycoconj J 14:67–73

    Article  CAS  PubMed  Google Scholar 

  • Iwamori M, Kaido T, Iwamori Y, Ohta Y, Tsukamoto K, Kozaki S (2005) Involvement of the C-terminal tail of Arthrobacter ureafaciens sialidase isoenzyme M in cleavage of the internal sialic acid of ganglioside GM1. J Biochem 138:327–334

    Article  CAS  PubMed  Google Scholar 

  • Izumi M, Wong C-H (2001) Microbial sialyltransferases for carbohydrate synthesis. Trends Glycosci Glycotechnol 13:345–360

    Article  CAS  Google Scholar 

  • Johnson KF (1999) Synthesis of oligosacchrides by bacterial enzymes. Glycoconj J 16:141–146

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kessler J, Heck J, Tanenbaum SW, Flashner M (1982) Substrate and product specificity of Arthrobacter sialophilus neuraminidase. J Biol Chem 257:5056–5060

    CAS  PubMed  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Ann Rev Biochem 79:471–505

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kwon O, Oh DB (2010a) Impacts of glycans attached to therapeutic glycoproteins. J Plant Biotechnol 37:292–304, Korean

    Article  Google Scholar 

  • Kim S, Oh DB, Kwon O, Kang HA (2010b) Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:893–903

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Oh DB, Kwon O, Kang HA (2010c) Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J Biochem 147:523–533

    Article  CAS  PubMed  Google Scholar 

  • King SJ, Hippe KR, Weiser JN (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961–974

    Article  CAS  PubMed  Google Scholar 

  • Kruse S, Kleineidam RG, Roggentin P, Schauer R (1996) Expression and purification of a recombinant “small” sialidase from Clostridium perfringens A99. Protein Expr Purif 7:415–422

    Article  CAS  PubMed  Google Scholar 

  • Lichtensteiger CA, Vimr ER (2003) Purification and renaturation of membrane neuraminidase from Haemophilus parasuis. Vet Microbiol 93:79–87

    Article  CAS  PubMed  Google Scholar 

  • Makimura Y, Ishida H, Kondo A, Hasegawa A, Kiso M (1998) Regioselective α(2 → 3)-sialylation of Lex and Lea by sialidase-catalyzed transglycosylation. J Carbohydr Chem 17:975–979

    Article  CAS  Google Scholar 

  • Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A (2006) Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 74:4014–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariño K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723

    Article  CAS  PubMed  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LC, Andrade AF (1998) Trans-sialidase activity for sialic acid incorporation on Corynebacterium diphtheriae. FEMS Microbiol Lett 168:167–172

    Article  CAS  PubMed  Google Scholar 

  • Mizan S, Henk A, Stallings A, Maier M, Lee MD (2000) Cloning and characterization of sialidases with 2–6′ and 2–3′ sialyl lactose specificity from Pasteurella multocida. J Bacteriol 182:6874–6883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagna G, Cremona ML, Paris G, Amaya MF, Buschiazzo A, Alzari PM, Frasch AC (2002) The trans-sialidase from the African trypanosome Trypanosoma brucei. Eur J Biochem 269:2941–2950

    Article  CAS  PubMed  Google Scholar 

  • Newstead S, Chien CH, Taylor M, Taylor G (2004) Crystallization and atomic resolution X-ray diffraction of the catalytic domain of the large sialidase, nanI, from Clostridium perfringens. Acta Crystallogr D Biol Crystallogr 60:2063–2066

    Article  CAS  PubMed  Google Scholar 

  • Newstead S, Watson JN, Knoll TL, Bennet AJ, Taylor G (2005) Structure and mechanism of action of an inverting mutant sialidase. Biochemistry 44:9117–9122

    Article  CAS  PubMed  Google Scholar 

  • Newstead SL, Potter JA, Wilson JC, Xu G, Chien CH, Watts AG, Withers SG, Taylor GL (2008) The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J Biol Chem 283:9080–9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngantung FA, Miller PG, Brushett FR, Tang GL, Wang DI (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95:106–119

    Article  CAS  PubMed  Google Scholar 

  • Pettigrew MM, Fennie KP, York MP, Daniels J, Ghaffar F (2006) Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect Immun 74:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40:8868–8876

    Article  CAS  PubMed  Google Scholar 

  • Roggentin P, Berg W, Schauer R (1987) Purification and characterization of sialidase from Clostridium sordellii G12. Glycoconj J 4:349–359

    Article  CAS  Google Scholar 

  • Roggentin P, Schauer R, Hoyer LL, Vimr ER (1993) The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9:915–921

    Article  CAS  PubMed  Google Scholar 

  • Roggentin P, Kleineidam RG, Schauer R (1995) Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biol Chem Hoppe Seyler 376:569–575

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert S, Martens V, De Vusser K, Contreras R (2005) Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides. J Biotechnol 119:379–388

    Article  CAS  PubMed  Google Scholar 

  • Sakurada K, Ohta T, Hasegawa M (1992) Cloning, expression, and characterization of the Micromonospora viridifaciens neuraminidase gene in Streptomyces lividans. J Bacteriol 174:6896–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Sauerbrei B, Thiem J (2000) Chemoenzymatic synthesis of sialyl oligosaccharides with sialidases employing transglycosylation methodology. J Org Chem 65:8518–8526

    Article  CAS  PubMed  Google Scholar 

  • Scudder P, Doom JP, Chuenkova M, Manger ID, Pereira ME (1993) Enzymatic characterization of β-d-galactoside α2,3-trans-sialidase from Trypanosoma cruzi. J Biol Chem 268:9886–9891

    CAS  PubMed  Google Scholar 

  • Tanaka H, Ito F, Iwasaki T (1992) Purification and characterization of a sialidase from Bacteroides fragilis SBT3182. Biochem Biophys Res Commun 189:524–529

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ito F, Iwasaki T (1994) Two sialidases which preferentially hydrolyze sialyl α2-8 linkage from Bacteroides fragilis SBT3182. J Biochem 115:318–321

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ito F, Iwasaki T (1995) A system for sialic acid transfer by colominic acid and a sialidase that preferentially hydrolyzes sialyl α-2,8 linkages. Biosci Biotechnol Biochem 59:638–643

    Article  CAS  PubMed  Google Scholar 

  • Taylor G (1996) Sialidases: structures, biological significance and therapeutic potential. Curr Opin Struct Biol 6:830–837

    Article  CAS  PubMed  Google Scholar 

  • Thiem J, Sauerbrei B (1991) Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angew Chem Int Ed Engl 30:1503–1505

    Article  Google Scholar 

  • Thompson H, Homer KA, Rao S, Booth V, Hosie AH (2009) An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia. J Bacteriol 191:3623–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiralongo E, Schrader S, Lange H, Lemke H, Tiralongo J, Schauer R (2003) Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. J Biol Chem 278:23301–23310

    Article  CAS  PubMed  Google Scholar 

  • Tong HH, Blue LE, James MA, DeMaria TF (2000) Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun 68:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traving C, Schauer R, Roggentin P (1994) Gene structure of the “large” sialidase isoenzyme from Clostridium perfringens A99 and its relationship with other clostridial nanH proteins. Glycoconj J 11:141–151

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V (2009) The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 206:1845–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A (1999) Sialic acids. In: Varki A, Cummings R, Esko J, Freeze, Hart G, Marth J (eds) Essential of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 195–209

  • Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Vetere A, Paoletti S (1996) Complete synthesis of 3′-sialyl-N-acetyllactosamine by regioselective transglycosylation. FEBS Lett 399:203–206

    Article  CAS  PubMed  Google Scholar 

  • Vimr ER, Lichtensteiger C (2002) To sialylate, or not to sialylate: that is the question. Trends Microbiol 10:254–257

    Article  CAS  PubMed  Google Scholar 

  • Vimr ER, Lawrisuk L, Galen J, Kaper JB (1988) Cloning and expression of the Vibrio cholerae neuraminidase gene nanH in Escherichia coli. J Bacteriol 170:1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimr ER, Kathryn AK, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Nicolai H, Hammann R, Werner H, Zilliken F (1983) Isolation and characterization of sialidase from Bacteroides fragilis. FEMS Microbiol Lett 17:217–220

    Article  Google Scholar 

  • Wang LX, Huang W (2009) Enzymatic transglycosylation for glycoconjugate synthesis. Curr Opin Chem Biol 13:592–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Tanenbaum SW, Flashner M (1978) Purification and properties of Arthrobacter neuraminidase. Biochim Biophys Acta 523:170–180

    Article  CAS  PubMed  Google Scholar 

  • Watson JN, Dookhun V, Borgford TJ, Bennet AJ (2003) Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase. Biochemistry 42:12682–12690

    Article  CAS  PubMed  Google Scholar 

  • Watson JN, Newstead S, Dookhun V, Taylor G, Bennet AJ (2004) Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase from Micromonospora viridifaciens. FEBS Lett 577:265–269

    Article  CAS  PubMed  Google Scholar 

  • Weijers CA, Franssen MC, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26:436–456

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Potter JA, Russell RJ, Oggioni MR, Andrew PW, Taylor GL (2008) Crystal structure of the NanB sialidase from Streptococcus pneumoniae. J Mol Biol 384:436–449

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Ryan C, Kiefel MJ, Wilson JC, Taylor GL (2009) Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. J Mol Biol 386:828–840

    Article  CAS  PubMed  Google Scholar 

  • Yeung MK (1993) Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp. Infect Immun 61:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung MK, Fernandez SR (1991) Isolation of a neuraminidase gene from Actinomyces viscosus T14V. Appl Environ Microbiol 57:3062–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenz KI, Roggentin P, Schauer R (1993) Isolation and properties of the natural and the recombinant sialidase from Clostridium septicum NC 0054714. Glycoconj J 10:50–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korean Ministry of Land, Transport, and Maritime Affairs (Marine and Extreme Genome Research Center Program) and from the Korean Ministry of Knowledge and Economy (Next Generation New Technology Development Program) to O. Kwon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsuk Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Oh, DB., Kang, H.A. et al. Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 91, 1–15 (2011). https://doi.org/10.1007/s00253-011-3307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3307-2

Keywords

Navigation