Skip to main content
Log in

Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poly(hydroxyalkanoates) (PHAs) constitute biodegradable polyesters and are considered among the most promising candidates to replace common petrochemical plastics in various applications. To date, all commercial processes for PHA production employ microbial discontinuous fed-batch fermentations. These processes feature drawbacks such as varying product quality and the inevitable periods of downtime for preparation and post-treatment of the bioreactor equipment. An unprecedented approach to PHA production was chosen in the presented work using a multistage system consisting of five continuous stirred tank reactors in series (5-SCR), which can be considered as a process engineering substitute of a continuous tubular plug flow reactor. The first stage of the reactor cascade is the site of balanced bacterial growth; thereafter, the fermentation broth is continuously fed from the first into the subsequent reactors, where PHA accumulation takes place under nitrogen-limiting conditions. Cupriavidus necator was used as production strain. The focus of the experimental work was devoted to the development of a PHA production process characterized by high productivity and high intracellular polymer content. The results of the experimental work with the reactor cascade demonstrated its potential in terms of volumetric and specific productivity (1.85 g L−1 h−1 and 0.100 g g−1 h−1, respectively), polymer content (77%, w/w) and polymer properties (M w = 665 kg/mol, PDI = 2.6). Thus, implementing the technology for 5-SCR production of PHB results in an economically viable process. The study compares the outcome of the work with literature data from continuous two-stage PHA production and industrial PHA production in fed-batch mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    Article  CAS  Google Scholar 

  • Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon sources by bacterial fermentation. Pol Degrad Stabil 80:183–194

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  • Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K (1995) Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 41:239–248

    Article  CAS  Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  Google Scholar 

  • Chen CQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  Google Scholar 

  • Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VHC Publishers, New York, pp 33–61. ISBN 0-471-18732-1

    Google Scholar 

  • Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 55:165–169

    Article  CAS  Google Scholar 

  • Du G, Chen J, Yu J, Lun S (2001a) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88:59–65

    Article  CAS  Google Scholar 

  • Du G, Chen J, Yu J, Lun S (2001b) Kinetic studies on poly-3-hydroxybutyrate formation by Ralstonia eutropha in a two-stage continuous culture system. Process Biochem 37:219–227

    Article  CAS  Google Scholar 

  • Falcone DMB (2004) Influence of incorporation of poly(lactic acid)—PLA, of wood powder and other additives over physical–mechanical behaviour of poly(hydroxybutyrate)—PHB. MSc thesis UFSCar, SP, Brazil

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737

    Article  CAS  Google Scholar 

  • Hänggi UJ (1995) Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbiol Rev 16:213–220

    Article  Google Scholar 

  • Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130:57–66

    Article  CAS  Google Scholar 

  • Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  CAS  Google Scholar 

  • Khanna S, Srivastava A (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fedbatch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Varila P, Pereira L (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  Google Scholar 

  • Koller M, Hesse P, Kutschera C, Bona R, Nascimento J, Ortega S, Agnelli J, Braunegg G (2010a) Sustainable embedding of the bioplastic poly-(3-hydroxybutyrate) into sugarcane industry: principles of a future-oriented technology in Brazil. In: Weller M, Hubner C, Eyerer P (eds) Polymers—opportunities and risks II. Springer, Berlin, pp 81–96

    Google Scholar 

  • Koller M, Salerno A, de Sousa M, Dias M, Reiterer A, Braunegg G (2010b) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48:255–269

    CAS  Google Scholar 

  • Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010c) Microbial PHA production from waste raw materials. In: Microbiology monographs, 2010, volume 14/2010, pp 85–119. doi:10.1007/978-3-642-03287-5_5

  • Koyama N, Doi Y (1995) Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Alcaligenes eutrophus. Biotechnol Lett 17:281–284

    Article  CAS  Google Scholar 

  • Küng W (1982) Wachstum und poly-d-(−)-3-hydroxybuttersäure—akkumulation bei Alcaligenes latus. Diploma thesis at Graz University of Technology, Austria

  • Lee SY (1996a) Plastic bacteria?: Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  • Lee SY (1996b) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  Google Scholar 

  • Lee SY, Lee Y (2003) Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(−)-hydroxycarboxylic acids. Appl Environ Microbiol 69:3421–3426

    Article  CAS  Google Scholar 

  • Moser A (1988) Bioprocess technology: kinetics and reactors. Springer, New York

    Google Scholar 

  • Mothes G, Ackermann J-U (2005) Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a target mole fraction of 4-hydroxybutyric acid units by two-stage continuous cultivation of Delftia acidovorans P4a. Eng Life Sci 5:58–62

    Article  CAS  Google Scholar 

  • Nascimento JF, Pachekoski WM, Agnelli JAM (2009) Environmentally degradable polymeric composition and method for obtaining an environmentally degradable polymeric composition. US2009/0023836 A1—Assignee by PHB INDUSTRIAL S.A., Serrana, SP, BR

  • Nonato RV, Mantelatto PE, Rossell CE (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5

    Article  CAS  Google Scholar 

  • Patel M, Bastioli C, Marini L, Würdinger E (2003) Life-cycle assessment of bio-based polymers and natural fiber composites. In: Steinbüchel A (ed) Biopolymers, vol 10. Wiley-VCH, Weinheim, pp 409–452

    Google Scholar 

  • Pietrini M, Roes L, Patel MK, Chiellini E (2007) Comparative life cycle studies on PHB based composites as potential replacement for conventional petrochemical plastics. Biomacromolecules 8:2210–2218

    Article  CAS  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C, Dubé B, Bataille P, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146

    Article  CAS  Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  Google Scholar 

  • Rossell CEV, Mantelatto PE, Agnelli JAM, Nascimento J (2006) Sugar-based biorefinery—technology for integrated production of poly(3-hydroxybutyrate), sugar, and ethanol. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products. Status quo and future directions, vol. 1. Wiley-VCH, Weinheim, pp 209–225

    Google Scholar 

  • Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotech Bioeng 55:28–32

    Article  CAS  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  • Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Molec Mikrobiol 5:535–542

    Article  Google Scholar 

  • Steinbüchel A, Valentin H (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 36:433–442

    CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Fermentation process development for the production of medium-chain-length poly-3-hydroxyalkanoates. Appl Microbiol Biotechnol 75:475–485

    Article  CAS  Google Scholar 

  • Taniguchi I, Kagotani K, Kimura Y (2003) Microbial production of poly(hydroxyalkanoates) from waste edible oils. Green Chem 5:545–548

    Article  CAS  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  Google Scholar 

  • Yu ST, Lin CC, Too JR (2005) PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochem 40:2729–2734

    Article  CAS  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  Google Scholar 

  • Zinn M, Weilenmann H-U, Hany R, Schmid M, Egli T (2003) Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnol 23:309–316

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The study was enabled by the financial support provided by BASF SE for the research projects “Evaluation of strains and process for the production of PHA—step 1 and 2” which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlić, A., Koller, M., Scherzer, D. et al. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91, 295–304 (2011). https://doi.org/10.1007/s00253-011-3260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3260-0

Keywords

Navigation