Skip to main content
Log in

An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous (1991) Routine methods for determination of free fatty acids in milk. IDF Bull 265:35–40

    Google Scholar 

  • Baruzzi F, Morea M, Matarante A, Cocconcelli PS (2000) Changes in the Lactobacillus community during Ricotta forte cheese natural fermentation. J Appl Microbiol 89:807–814

    Article  CAS  Google Scholar 

  • Baruzzi F, Matarante A, Caputo L, Morea M (2005) Development of a culture-independent polymerase chain reaction-based assay for the detection of lactobacilli in stretched cheese. J Rapid Methods Autom Microbiol 13:177–192

    Article  CAS  Google Scholar 

  • Bertazzoni Minelli E, Benini A, Marzotto M, Sbarbatic A, Ruzzenented O, Ferrario R, Hendriksf H, Dellaglio F (2004) Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J 14:723–736

    Article  CAS  Google Scholar 

  • Canzek Majhenic A, Bogovic Matijasic B, Rogelj I (2003) Chromosomal location of the genetic determinants for bacteriocins produced by Lactobacillus gasseri K7. J Dairy Res 70:199–203

    Article  CAS  Google Scholar 

  • Casas IA, Dobrogosz WJ (2000) Validation of probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis 12:247–285

    Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  Google Scholar 

  • Chiu HH, Tsai CC, Hsih HY, Tsen HY (2008) Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice. J Appl Microbiol 104:605–612

    Google Scholar 

  • Chou L-S, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    Article  CAS  Google Scholar 

  • Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227

    Article  CAS  Google Scholar 

  • Darragh AJ, Garrick DJ, Moughan PJ, Hendriks WH (1996) Correction for amino acid loss during acid hydrolysis of a purified protein. Anal Biochem 236:199–207

    Article  CAS  Google Scholar 

  • Dellaglio F, Felis GE (2005) Taxonomy of lactobacilli and bifidobacteria. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Wymondham, pp 25–49

    Google Scholar 

  • Denou E, Pridmore RD, Berger B, Panoff J-M, Arigoni F, Brussow H (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii Strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190:3161–3168

    Article  CAS  Google Scholar 

  • Ekwall P (1969) Two types of micelle formation in organic solvents. J Colloid Interface Sci 29:16–26

    Article  CAS  Google Scholar 

  • Elli M, Callegari ML, Ferrari S, Bessi E, Cattivelli D, Soldi S, Morelli L, Goupil Feuillerat N, Antoine JM (2006) Survival of yogurt bacteria in the human gut. Appl Environ Microbiol 72:5113–5117

    Article  CAS  Google Scholar 

  • Erkkila S, Petaja E (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci 55:297–300

    Article  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization Working Group Report

  • Fernández de Palencia P, López P, Corbí AL, Peláez C, Requena T (2008) Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227:1475–1484

    Article  Google Scholar 

  • Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  CAS  Google Scholar 

  • Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J Dairy Sci 67:3045–3051

    Article  CAS  Google Scholar 

  • Goldin BR, Gorbach SL (1992) Probiotics for humans. In: Fuller R (ed) Probiotics, the scientific basis. Chapman & Hall, London, pp 355–376

    Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  CAS  Google Scholar 

  • Haller D, Colbus H, Ganzle MG, Scherenbacher P, Bode C, Hammes WP (2001) Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: a comparative in vitro study between bacteria of intestinal and fermented food origin. Syst Appl Microbiol 24:218–226

    Article  CAS  Google Scholar 

  • Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260

    Article  Google Scholar 

  • Ibrahim SA, Bezkorovainy A (1993) Survival of bifidobacteria in the presence of bile salt. J Sci Food Agric 62:351–354

    Article  CAS  Google Scholar 

  • Johnson JL, Phelps CF, Cummins CS, London J, Gasser F (1980) Taxonomy of the Lactobacillus acidophilus group. Int J Syst Bacteriol 30:53–68

    Article  CAS  Google Scholar 

  • Kim SW, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43:346–350

    Article  CAS  Google Scholar 

  • Klijn N, Weerkamp AH, de Vos WM (1995) Detection and characterization of lactose-utilizing Lactococcus subsp. in natural ecosystems. Appl Environ Microbiol 61:788–792

    CAS  Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics: growth promoting factors produced by microorganisms. Sci 147:747–748

    Article  CAS  Google Scholar 

  • Maina Mathara J, Schillinger U, Guigas C, Franz C, Museve Kutima P, Mbugua SK, Shin H-K, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  Google Scholar 

  • Martín R, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM (2005) Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Hum Lact 21:8–17

    Article  Google Scholar 

  • Matarante A, Baruzzi F, Cocconcelli PS, Morea M (2004) Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl Environ Microbiol 70:5168–5176

    Article  CAS  Google Scholar 

  • Metchnikoff E (1907) Lactic acid as inhibiting intestinal putrefaction. In: Chalmers Mitchell P (ed) The prolongation of life: optimistic studies. Heinemann, London, pp 161–183

    Google Scholar 

  • Michetti P, Dorta G, Wiesel PH, Brassart D, Vedu E, Herranz M, Felley C, Porta N, Rouvet M, Blum AL, Corthesy-Theulaz I (1999) Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans. Digestion 60:203–209

    Article  CAS  Google Scholar 

  • Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103:109–115

    Article  Google Scholar 

  • Morelli L (2000) In vitro selection of probiotic lactobacilli: a critical appraisal. Curr Issues Intest Microbiol 1:59–67

    CAS  Google Scholar 

  • Morelli L (2007) In vitro assessment of probiotic bacteria: from survival to functionality. Int Dairy J 17:1278–1283

    Article  Google Scholar 

  • Ricelli A, Baruzzi F, Solfrizzo M, Morea M, Fanizzi FP (2007) Biotransformation of patulin by Gluconobacter oxydans. Appl Environ Microbiol 73:785–792

    Article  CAS  Google Scholar 

  • Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396–402

    Google Scholar 

  • Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland S-E, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44:93–106

    Article  CAS  Google Scholar 

  • Santos A, San Mauro M, Sanchez A, Torres JM, Marquina D (2003) The antimicrobial properties of different strains of Lactobacillus spp. isolated from Kefir. Syst Appl Microbiol 26:434–437

    Article  CAS  Google Scholar 

  • Schillinger U, Guigas C, Holzapfel WH (2005) In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J 15:1289–1297

    Article  CAS  Google Scholar 

  • Skarin A, Sylwan J (1986) Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis. Acta Pathol Microbiol Scand B Microbiol 94B:399–403

    Google Scholar 

  • Song YL, Kato N, Liu CX, Matsumiya Y, Kato H, Watanabe K (2000) Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett 187:167–173

    CAS  Google Scholar 

  • Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477

    CAS  Google Scholar 

  • Torriani S, Felis GE, Dellaglio F (2001) Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 67:3450–3454

    Article  CAS  Google Scholar 

  • Usman P, Hosono A (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248

    Article  CAS  Google Scholar 

  • Vizoso Pinto MG, Franz CM, Schillinger U, Holzapfel WH (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214

    Article  CAS  Google Scholar 

  • Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66:297–303

    Article  CAS  Google Scholar 

  • Wiesburg GW, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  • Zanini K, Marzotto M, Castellazzi A, Borsari A, Dellaglio F, Torriani S (2007) The effects of fermented milks with simple and complex probiotic mixtures on the intestinal microbiota and immune response of healthy adults and children. Int Dairy J 17:1332–1343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially carried out within the research activities of the Cooperative Project “Improving the Processing of Four Fermented Beverages from Eastern European Countries” 031918 FERBEV, funded by the Community's Sixth Framework Programme, Horizontal Research Activities Involving SMEs.

We thank Mr. G. Stea (ISPA-CNR, Bari-Italy) for his invaluable help in molecular typing and DNA sequencing and Dr H. Sonmez (Intermak Mak.Iml.Ith.San Ve Tic A.S., Konya-Turkey) and Dr. I. Tsilikishvili (Amaltea Didube Milk, Tbilisi-Georgia) for providing artisanal samples of Ayran and Matsony, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Baruzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruzzi, F., Poltronieri, P., Quero, G.M. et al. An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks. Appl Microbiol Biotechnol 90, 331–342 (2011). https://doi.org/10.1007/s00253-011-3133-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3133-6

Keywords

Navigation