Skip to main content
Log in

Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

GlnR is the global regulator of nitrogen assimilation in Streptomyces coelicolor M145 and other actinobacteria. Two-dimensional polyacrylamide gel electrophoresis analyses were performed to identify new GlnR target genes by proteomic comparison of wild-type S. coelicolor M145 and a ΔglnR mutant. Fifty proteins were found to be differentially regulated between S. coelicolor M145 and the ΔglnR mutant. These spots were identified by nanoHPLC–ESI-MS/MS and classified according to their cellular role. Most of the identified proteins are involved in amino acid biosynthesis and in carbon metabolism, demonstrating that the role of GlnR is not restricted to nitrogen metabolism. Thus, GlnR is supposed to play an important role in the global metabolic control of S. coelicolor M145.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amon J, Bräu T, Grimrath A, Hänssler E, Hasselt K, Höller M, Jessberger OL, Szököl J, Titgemeyer F, Burkovski A (2008) Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. J Bacteriol 190:7108–7116

    Article  CAS  Google Scholar 

  • Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 60:779–789

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chater KF, Losick R (1996) In: Shapiro JH, Dworkin M (eds) The mycelial-life style of Streptomyces coelicolor A3(2) and its relatives. Oxford University Press, New York, pp 93–114

    Google Scholar 

  • De Mot R, Schoofs G, Nagy I (2007) Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 188:257–271

    Article  Google Scholar 

  • Fink D, Weißschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. PNAS 100:1541–1546

    Article  CAS  Google Scholar 

  • Hesketh A, Fink D, Gust B, Rexer H-U, Scheel B, Chater K, Wohlleben W, Engels A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46:319–330

    Article  CAS  Google Scholar 

  • Kang J-G, Hahn M-Y, Ishihama A, Roe J-H (1997) Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25:2566–2573

    Article  CAS  Google Scholar 

  • Karandikar A, Sharples GP, Hobbs G (1997) Differentiation of Streptomyces coelicolor A3(2) under nitrate limited conditions. Microbiology 143:3581–3590

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Langlois P, Bourassa S, Poirier GG, Beaulieu C (2003) Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material. Appl Environ Microbiol 69:1884–1889

    Article  CAS  Google Scholar 

  • Lee E-J, Karoonuthaisiri N, Kim H-S, Park J-H, Cha C-J, Kao CM, Roe J-H (2005) A master regulator σB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252–1264

    Article  CAS  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–88

    Article  CAS  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  Google Scholar 

  • Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li X-M, Minas W, Orsaria L, Roeder D, Thompson CJ (2003) Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol Microbiol 48:1289–1303

    Article  CAS  Google Scholar 

  • Okanishi M, Suzuki K, Umezawa H (1974) Formation and reversion of streptomycetes protoplasts: cultural condition and morphological study. J Gen Microbio 80:389–400

    CAS  Google Scholar 

  • Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    CAS  Google Scholar 

  • Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, Sandoval JM, Castro ME, Elías AO, Vásquez CC (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2:e211. doi:10.1371/journal.pone.0000211

    Article  Google Scholar 

  • Reitzer L, Schneider BL (2001) Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444

    Article  CAS  Google Scholar 

  • Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61:1237–1251

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Manzanal T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    Article  CAS  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiology 147:2447–2459

    CAS  Google Scholar 

  • Wray LV Jr, Atkinson MR, Fisher SH (1991) Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor. J Bacteriol 173:7351–7360

    CAS  Google Scholar 

  • Wray LV, Fisher SH (1993) The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators. Gene 130:145–150

    Article  CAS  Google Scholar 

  • Yu H, Yao Y, Liu Y, Jiao R, Jiang W, Zhao G-P (2007) A complex role of Amycolatopsis mediterranei GlnR in nitrogen metabolism and related antibiotics production. Arch Microbiol 188:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.T. acknowledges a scholarship from the Studienstiftung des deutschen Volkes. This work was supported by the EU (LSH 4032, ActinoGen) and the BMBF as part of the SYSMO project (5019). The authors wish to thank Hans-Peter Fiedler and Dirk Schulz for their help with actinorhodin extraction, and Silke Wahl, Inga Buchen, and Johannes Madlung for the excellent technical assistance. The Proteome Center Tübingen is supported by the Ministerium für Wissenschaft und Kunst, Landesregierung Baden-Württemberg. We acknowledge Tobias Lamkemeyer for coordinating the proteomic analysis.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Mast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiffert, Y., Franz-Wachtel, M., Fladerer, C. et al. Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 89, 1149–1159 (2011). https://doi.org/10.1007/s00253-011-3086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3086-9

Keywords

Navigation