Skip to main content
Log in

State of the art molecular markers for fecal pollution source tracking in water

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Most environmental waters are susceptible to fecal contamination from animal and/or human pollution sources. To attenuate or eliminate such contamination, it is often critical that the pollution sources are rapidly and correctly identified. Fecal pollution source tracking (FST) is a promising research area that aims to identify the origin(s) of fecal pollution in water. This mini-review focuses on the potentials and limitations of library independent molecular markers that are exclusively or strongly associated with fecal pollution from humans and different animals. Fecal-source-associated molecular markers include nucleic acid sequences from prokaryotes and viruses associated with specific biological hosts, but also sequences such as mitochondrial DNA retrieved directly from humans and animals. However, some fecal-source-associated markers may not be absolutely specific for a given source type, and apparent specificity and frequency established in early studies are sometimes compromised by new studies suggesting variation in specificity and abundance on a regional, global and/or temporal scale. It is therefore recommended that FST studies are based on carefully selected arrays of markers, and that identification of human and animal contributions are based on a multi-marker toolkit with several markers for each source category. Furthermore, future FST studies should benefit from increased knowledge regarding sampling strategies and temporal and spatial variability of marker ratios. It will also be important to obtain a better understanding of marker persistence and the quantitative relationship between marker abundance and the relative contribution from individual fecal pollution source types. A combination of enhanced pathogen screening methods, and validated quantitative source tracking techniques could then contribute significantly to future management of environmental water quality including improved microbial risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed W, Powell D, Goonetlike A, Gardner T (2008a) Detection and source identification of faecal pollution in non-sewered catchment by menas of host-specific molecular markers. Water Sci Technol 58:579–586

    CAS  Google Scholar 

  • Ahmed W, Stewart J, Powell D, Gardner T (2008b) Evaluation of the host-specificity and prevalence of enterococci surface protein (esp) marker in sewage and its application for sourcing human fecal pollution. J Environ Qual 23:1583–1588

    Google Scholar 

  • Ahmed W, Stewart J, Gardner T, Powell D (2008c) A real-time polymerase chain reaction assay for quantitative detection of the human-specific enterococci surface protein marker in sewage and environmental waters. Environ Microbiol 10:3255–3264

    CAS  Google Scholar 

  • Bae S, Wuertz S (2009) Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43:4850–4859

    CAS  Google Scholar 

  • Baker-Austin C, Morris J, Lowther JA, Rangdale R, Lees DN (2009) Rapid identification and differentiation of agricultural faecal contamination sources using multiplex PCR. Lett Appl Microbiol 49:529–532

    CAS  Google Scholar 

  • Baker-Austin C, Rangdale R, Lowther J, Lees DN (2010) Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters. Water Sci Technol 61:1–7

    CAS  Google Scholar 

  • Ballesté E, Bonjoch X, Belanche LA, Blanch AR (2010) Molecular indicators used in the development of predictive models for microbial source tracking. Appl Environ Microbiol 76:1789–1795

    Google Scholar 

  • Bernhard AE, Field KG (2000a) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:1587–1594

    CAS  Google Scholar 

  • Bernhard AE, Field KG (2000b) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66:4571–4574

    CAS  Google Scholar 

  • Blanch AR, Belanche-Munoz L, Bonjoch X, Ebdon J, Gantzer C, Lucena F, Ottoson J, Kourtis C, Iversen A, Kuhn I, Moce L, Muniesa M, Schwartzbrod J, Skraber S, GT Papageor-giou, Taylor H, Wallis J, Jofre J (2006) Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl Environ Microbiol 72:5915–5926

    CAS  Google Scholar 

  • Boehm AB (2007) Enterococci concentrations in diverse coastal environments exhibit extreme variability. Environ Sci Tech 41:8227–8232

    CAS  Google Scholar 

  • Bonjoch X, Balleste E, Blanch AR (2004) Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp., to identify sources of fecal pollution. Appl Environ Microbiol 70:3171–3175

    CAS  Google Scholar 

  • Bonjoch X, Balleste E, Blanch AR (2007) Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp., to identify sources of fecal pollution (Erratum). Appl Environ Microbiol 73:3122

    CAS  Google Scholar 

  • Bonjoch X, Lucena F, Blanch AR (2009) The persistence of bifidobacteria populations in a river measured by molecular and culture techniques. J Appl Microbiol 107:1178–1185

    CAS  Google Scholar 

  • Byappanahalli MN, Przybyla-Kelly K, Shively DA, Whitman RL (2008) Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination. Environ Sci Technol 42:8014–8020

    CAS  Google Scholar 

  • Caldwell JM, Levine JF (2009) Domestic wastewater influent profiling using mitochondrial real-time PCR for source tracking animal contamination. J Microbiol Meth 77:17–22

    CAS  Google Scholar 

  • Caldwell JM, Raley ME, Levine JF (2007) Mitochondrial multiplex real-time PCR as source tracking method in fecal-contaminated effluents. Environ Sci Technol 41:3277–3283

    CAS  Google Scholar 

  • Carson CA, Christiansen JM, Yampara-Iquise H, Benson VW, Baffaut C, Davis JV, Broz RR, Kurtz WB, Rogers WM, Fales WH (2005) Specificity of a Bacteroides thetaiotaomicron marker for human feces. Appl Environ Microbiol 71:4945–4949

    CAS  Google Scholar 

  • Clermont O, Lescat M, O’Brien CL, Gordon DM, Tenaillon O, Denamur E (2008) Evidence for a human-specific Escherichia coli clone. Environ Microbiol 10:1000–1006

    CAS  Google Scholar 

  • Cole D, Long SC, Sobsey MD (2003) Evaluation of F + RNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 69:6507–6514

    CAS  Google Scholar 

  • Devane ML, Robson B, Nourozi F, Scholes P, Gilpin BJ (2007) A PCR marker for detection in surface waters of faecal pollution derived from ducks. Water Res 41:3553–3560

    CAS  Google Scholar 

  • Dick LK, Simonich MT, Field KG (2005a) Microplate subtractive hybridization to enrich for source-specific Bacteroidales fecal pollution indicators. Appl Environ Microbiol 71:3179–3183

    CAS  Google Scholar 

  • Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, Field KG (2005b) Host distributions of uncultivated fecal Bacteroidales reveal genetic markers for fecal source identification. Appl Environ Microbiol 71:3184–3191

    CAS  Google Scholar 

  • Dick LK, Stelzer EA, Bertke EE, Fong DL, Stoeckel DM (2010) Relative decay of Bateroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Appl Environ Microbiol 76:3255–3262

    CAS  Google Scholar 

  • Dorai-Raj S, O’Grady J, Colleran E (2009) Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Res 43:4980–4988

    CAS  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538

    CAS  Google Scholar 

  • Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69:357–371

    CAS  Google Scholar 

  • Fong T, Griffin D, Lipp E (2005) Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking. Appl Environ Microbiol 71:2070–2078

    CAS  Google Scholar 

  • Fremaux B, Boa T, Yost CK (2010) Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water resources. Appl Environ Microbiol 76:4886–4889

    CAS  Google Scholar 

  • Girones R, Ferrus MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Abreu Correa A, Hundesa A, Carratala A, Bofil-Mas S (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44:4325–4339

    CAS  Google Scholar 

  • Gordon DM (2001) Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147:1079–1085

    CAS  Google Scholar 

  • Gourmelon M, Caprais MP, Ségura R, Le Mennec C, Lozach S, Piriou JY, Rincé A (2007) Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries. Appl Environ Microbiol 73:4857–4866

    CAS  Google Scholar 

  • Gourmelon M, Caprais MP, Le Mennec C, Mieszkin S, Ponthoreau C, Gendronneau M (2010a) Application of library-independent microbial source tracking methods for identifying the sources of faecal contamination in coastal areas. Water Sci Technol 61:1401–1409

    CAS  Google Scholar 

  • Gourmelon M, Caprais MP, Mieszkin S, Marti R, Wéry N, Jardé E, Derrien M, Jadas-Hécart A, Communal PY, Jaffrezic A, Pourcher AM (2010b) Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44:4812–4824

    CAS  Google Scholar 

  • Hagedorn C, Weisberg SB (2009) Chemical-based fecal source tracking methods: current status and guidelines for evaluation. Rev Environ Sci Biotechnol 8:275–287

    CAS  Google Scholar 

  • Hamilton MJ, Yan T, Sadowsky MJ (2006) Development of goose- and duck-specific DNA markers to determine sources of Escherichia coli in waterways. Appl Environ Microbiol 72:4012–4019

    CAS  Google Scholar 

  • Hansen DL, Ishii S, Sadowsky MJ, Hicks RE (2009) Escherichia coli populations in great lakes waterfowl exhibit spatial stability and temporal shifting. Appl Environ Microbiol 75:1546–1551

    CAS  Google Scholar 

  • Harada T, Tsuji N, Otsuki K, Murase T (2005) Detection of the esp gene in high-level gentamicin resistant Enterococcus faecalis strains from pet animals in Japan. Vet Microbiol 106:139–143

    CAS  Google Scholar 

  • Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C (2009) Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res 43:4812–4819

    CAS  Google Scholar 

  • Hsu FC, Shieh YS, van Duin J, Beekwilder MJ, Sobsey MD (1995) Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes. Appl Environ Microbiol 61:3960–3966

    CAS  Google Scholar 

  • Hundesa A, Maluquer de Motes C, Bofill-Mas S, Albinana-Gimenez N, Girones R (2006) Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 72:7886–7893

    CAS  Google Scholar 

  • Hundesa A, Maluquer de Motes C, Albinana-Gimenez N, Rodriquez-Manzano J, Bofill-Mas S, Suñen E, Girones R (2009) Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J Virol Methods 158:130–135

    CAS  Google Scholar 

  • Hundesa A, Bofill-Mas S, Maluquer de Motes C, Rodtiguez-Manzano J, Bach A, Casas M, Girones R (2010) Development of a quantitative PCR assay for the quantification of bovine polyomavirus as a microbial source-tracking tool. J Virol Methods 163:385–389

    CAS  Google Scholar 

  • Jimenez-Clavero MA, Fernandez C, Ortiz JA, Pro J, Carbonell G, Tarazona JV, Roblas N, Ley V (2003) Teschoviruses as indicators of porcine fecal contamination of surface water. Appl Environ Microbiol 69:6311–6315

    CAS  Google Scholar 

  • Jimenez-Clavero MA, Escribano-Romero E, Mansilla C, Gomez N, Cordoba L, Roblas N, Ponz F, Ley V, Saiz JC (2005) Survey of bovine enterovirus in biological and environmental samples by a highly sensitive real-time reverse transcription-PCR. Appl Environ Microbiol 71:3536–3543

    CAS  Google Scholar 

  • Jofre J, Blanch AR (2010) Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality. J Appl Microbiol 109:1853–1867

    CAS  Google Scholar 

  • Khatib LA, Tsai YL, Olson BH (2002) A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic E. coli. Appl Microbiol Biotechnol 59:97–104

    CAS  Google Scholar 

  • Khatib LA, Tsai YL, Olson BH (2003) A biomarker for the identification of swine fecal pollution in water using the STII toxin gene from enterotoxigenic E. coli. Appl Microbiol Biotechnol 63:231–238

    CAS  Google Scholar 

  • Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:3701–3715

    CAS  Google Scholar 

  • Kim SY, Lee JE, Lee S, Lee HT, Hur HG, Ko G (2010) Characterization of Enterococcus spp. from human and animal feces using 16S rRNA sequences, the esp gene, and PFGE for microbial source tracking in Korea. Environ Sci Technol 44:3423–3428

    CAS  Google Scholar 

  • Konstantinov SR, Smidt H, de Vos WM (2005) Representational difference analysis and real-time PCR for strain-specific quantification of Lactobacillus sobrius sp. nov. Appl Environ Microbiol 71:7578–7581

    CAS  Google Scholar 

  • Kortbaoui R, Locas A, Imbeau M, Payment P, Villemur R (2009) Universal mitochondrial PCR combined with species-specific dot-blot assays as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water. Water Res 43:2002–2010

    CAS  Google Scholar 

  • Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan- based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72:4214–4224

    CAS  Google Scholar 

  • Layton BA, Walters SP, Boehm AB (2009) Distribution and diversity of the enterococcal surface protein (esp) gene in animal hosts and the Pacific coast environment. J Appl Microbiol 106:1521–1531

    CAS  Google Scholar 

  • Lee CS, Lee J (2010) Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination. J Microbiol Methods 82:311–318

    CAS  Google Scholar 

  • Lee JE, Lim MY, Kim SY, Lee S, Lee H, Oh H, Hur H, Ko G (2009) Molecular characterization of bacteriophages for microbial source tracking in Korea. Appl Environ Microbiol 75:7107–7114

    CAS  Google Scholar 

  • Ley V, Higgins J, Fayer R (2002) Bovine enteroviruses as indicators of fecal contamination. Appl Environ Microbiol 68:3455–3461

    CAS  Google Scholar 

  • Lu J, Santo Domingo J, Shanks OC (2007) Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Res 41:3561–3574

    CAS  Google Scholar 

  • Lu J, Santo Domingo J, Lamendella R, Edge T, Hill S (2008) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74:3969–3976

    CAS  Google Scholar 

  • Lu J, Santo Domingo J, Hill S, Edge T (2009) Microbial diversity and host specific sequences of Canada goose feces. Appl Environ Microbiol 75:5919–5926

    CAS  Google Scholar 

  • Maluquer de Motes C, Clemente-Casares P, Hundesa A, Martin M, Girones R (2004) Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Appl Environ Microbiol 70:1448–1454

    Google Scholar 

  • Martellini A, Payment P, Villemur R (2005) Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res 39:541–548

    CAS  Google Scholar 

  • Marti R, Dabert P, Ziebal C, Pourcher A (2010) Evaluation of Lactobacillus sobrius/L. amylovorus as a new microbial marker of pig manure. Appl Environ Microbiol 76:1456–1461

    CAS  Google Scholar 

  • McQuaig SM, Scott TM, Harwood VJ, Farrah SR, Lukasik JO (2006) Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. Appl Environ Microbiol 72:7567–7574

    CAS  Google Scholar 

  • McQuaig SM, Scott TM, Lukasik JO, Paul JH, Harwood VJ (2009) Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75:3379–3388

    CAS  Google Scholar 

  • Mieszkin S, Furet J, Corthier G, Gourmelon M (2009) Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16 S rRNA Genetic Markers. Appl Environ Microbiol 75:3045–3054

    CAS  Google Scholar 

  • Mieszkin S, Yala JF, Joubrel R, Gourmelon M (2010) Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J Appl Microbiol 108:974–984

    CAS  Google Scholar 

  • Nebra Y, Bonjoch X, Blanch AR (2003) Use of Bifidobacterium dentium as an indicator of the origin of fecal water pollution. Appl Environ Microbiol 69:2651–2656

    CAS  Google Scholar 

  • Noble RT, Allen SM, Blackwood AD, Chu W, Jiang SC, Lovelace GL, Sobsey MD, Stewart JR, Wait DA (2003) Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. J Water Health 1:195–207

    Google Scholar 

  • Noble RT, Griffith JF, Blackwood AD, Fuhrman JA, Gregory JB, Hernandez X, Liang X, Bera AA, Schiff K (2006) Multitiered approach using quantitative PCR to track sources of fecal pollution affecting Santa Monica Bay, California. Appl Environ Microbiol 72:1604–1612

    CAS  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Method 67:310–320

    CAS  Google Scholar 

  • Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73:5111–5117

    CAS  Google Scholar 

  • Okabe S, Shimazu Y (2007) Persistence of host-specific bacteroides-prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biotechnol 76:935–944

    CAS  Google Scholar 

  • Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Identification and quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwaters. Appl Microbiol Biotechnol 74:890–901

    CAS  Google Scholar 

  • Plummer JD, Long SC (2009) Identifying sources of surface water pollution: a toolbox approach. Am Water Works Assoc 101:75–88

    CAS  Google Scholar 

  • Reischer GH, Kasper DC, Steinborn R, Mach RL, Farnleitner AH (2006) Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this ethod in alpine karstic regions. Appl Environ Microbiol 72:5610–5614

    CAS  Google Scholar 

  • Reischer GH, Kasper DC, Steinborn R, Farnleitner AH, Mach RL (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett Appl Microbiol 44:351–356

    CAS  Google Scholar 

  • Reischer GH, Haider JM, Sommer R, Stadler H, Keiblinger KM, Hornek R, Zerobin W, Mach RL, Farnleitner AH (2008) Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ Microbiol 10:2598–2608

    CAS  Google Scholar 

  • Roslev P, Bastholm S, Iversen N (2008) Relationship between Escherichia coli, enterococci and fecal sterols in estuarine bathing water and sediment. Water Air Soil Pollut 194:13–21

    CAS  Google Scholar 

  • Roslev P, Iversen L, Sønderbo HL, Iversen N, Bastholm S (2009) Uptake and persistence of human associated Enterococcus in the mussel Mytilus edulis: Relevance for microbial source tracking. J Appl Microbiol 107:944–953

    CAS  Google Scholar 

  • Roslev P, Bukh AS, Iversen L, Sønderbo H, Iversen N (2010) Application of mussels as biosamplers for characterization of fecal pollution in coastal recreational waters. Water Sci Technol 62:586–593

    CAS  Google Scholar 

  • Sadowsky MJ, Call DR, Santo Domingo JW (2007) The future of microbial source tracking studies. In: Santo Domingo JW, Sadowsky MJ (eds) Microbial source tracking. ASM Press, USA, pp 235–277

    Google Scholar 

  • Santo Domingo JW, Bambic DG, Edge TA, Wuertz S (2007) Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res 41:3539–3552

    CAS  Google Scholar 

  • Santoro AE, Boehm AB (2007) Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides and traditional indicators. Environ Microbiol 9:2038–2049

    CAS  Google Scholar 

  • Saunders AM, Kristiansen A, Lund MB, Revsbech NP, Schramm A (2009) Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water. Syst Appl Microbiol 32:362–370

    CAS  Google Scholar 

  • Savill MG, Murray SR, Scholes P, Maas EW, McCormick RE, Moore EB, Gilpin BJ (2001) Application of polymerase chain reaction (PCR) and TaqMan PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J Microbiol Methods 47:355–368

    CAS  Google Scholar 

  • Schill WB, Mathes MV (2008) Real-Time PCR Detection and quantification of nine potential sourced of fecal contamination by analysis of mitochondrial cytochrome b targets. Environ Sci Technol 42:5229–5234

    CAS  Google Scholar 

  • Scott TM, Jenkins TM, Lukasik J, Rose JB (2005) Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ Sci Technol 39:283–287

    CAS  Google Scholar 

  • Scott TM, Harwood VJ, Ahmed W, Masago Y, Rose JB (2009) Comment on “Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination”. Environ Sci Technol 43:6434–6435

    CAS  Google Scholar 

  • Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005a) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic markers with real-time PCR for assessment of human fecal pollution in freshwater. Environ Microbiol 7:249–259

    CAS  Google Scholar 

  • Seurinck S, Verstraete W, Siciliano S (2005b) Microbial source tracking for identification of fecal pollution. Rev Environ Sci Biotechnol 4:19–37

    CAS  Google Scholar 

  • Shanks OC, Atikovic E, Blackwood AD, Lu J, Noble RT, Santo Domingo J, Seifring S, Sivaganesan M, Haugland RA (2008) Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74:745–752

    CAS  Google Scholar 

  • Shanks OC, Kelty CA, Sivaganesan M, Varma M, Haugland RA (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75:5507–5513

    CAS  Google Scholar 

  • Shuval H (2003) Estimating the global burden of thalassogenic diseases: human infectrious diseases caused by wastewater pollution of the marine environment. J Water Health 1:53–64

    Google Scholar 

  • Soule M, Kuhn E, Loge F, Gay J, Call DR (2006) Using DNA microarrays to identify library-independent markers for bacterial source tracking. Appl Environ Microbiol 72:1843–1851

    CAS  Google Scholar 

  • Stadler H, Skritek P, Sommer R, Mach RL, Zerobin W, Farnleitner AH (2008) Microbiological monitoring and automated event sampling at karst springs using LEO-satellites. Water Sci Technol 58:899–909

    CAS  Google Scholar 

  • Stapleton CM, Kay D, Wyer MD, Davies C, Watkins J, Kay C, McDonald AT, Porter J, Gawler A (2009) Evaluating the operational utility of a Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Res 43:4888–4899

    CAS  Google Scholar 

  • Stewart JR, Santo Domingo JW, Wade TJ (2007) Fecal pollution, public health, and microbial source tracking. In: Santo Domingo JW, Sadowsky MJ (eds) Microbial source tracking. ASM Press, USA, pp 1–32

    Google Scholar 

  • Stoeckel DM, Harwood VJ (2007) Performance, design and analysis in microbial source tracking studies. Appl Environ Microbiol 73:2405–2415

    CAS  Google Scholar 

  • Taylor H, Ebdon J (2007) All faeces are not equal: Microbial source tracking as a health protection tool. Water 21:32–34

    Google Scholar 

  • Tobe SS, Linacre AMT (2008) A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Sci Int Genet 2:249–256

    Google Scholar 

  • Ufnar JA, Wang S, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52

    CAS  Google Scholar 

  • Ufnar JA, Ufnar DF, Wang SY, Ellender RD (2007a) Development of a swine-associated fecal pollution marker based on host differences in methanogen mcrA genes. Appl Environ Microbiol 73:5209–5217

    CAS  Google Scholar 

  • Ufnar JA, Wang S, Ufnar D, Ellender RD (2007b) Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol 73:7118–7121

    CAS  Google Scholar 

  • US Environmental Protection Agency (2005) Microbial source tracking guide document. EPA/600/R-05/064. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Walters S, Field KG (2009) Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms. Environ Microbiol 11:1410–1421

    Google Scholar 

  • Walters SP, Yamahara KM, Boehm AB (2009) Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res 43:4929–4939

    CAS  Google Scholar 

  • Wang D, Silkie SS, Nelson KL, Wuertz S (2010) Estimating the true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method. Water Res 44:4760–4775

    CAS  Google Scholar 

  • Weidhaas JL, Macbeth TW, Olsen RL, Sadowsky MJ, Norat D, Harwood VJ (2010) Identification of a Brevibacterium marker gene specific to poultry litter and development of a quantitative PCR assay. J Appl Microbiol 109:334–347

    CAS  Google Scholar 

  • Whitman RL, Nevers MB (2004) Escherichia coli sampling reliability at a frequently closed Chicago beach: monitoring and management implications. Environ Sci Technol 38:4241–4246

    CAS  Google Scholar 

  • Whitman RL, Przybyla-Kelly K, Shively DA, Byappanahalli MN (2007) Incidence of the enterococcal surface protein (esp) gene in human and animal fecal sources. Environ Sci Technol 41:6090–6095

    CAS  Google Scholar 

  • Witty M, Nickels J, Lisa J, Tiedemann J (2009) Ecology, DNA, and the future of microbial source tracking. Water Air Soil Pollut 201:219–232

    CAS  Google Scholar 

  • Wolf S, Hewitt J, Greening GE (2010) Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Appl Environ Microbiol 76:1388–1394

    CAS  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. PNAS 100:10452–10459

    CAS  Google Scholar 

  • Zheng G, Yampara-Iquise H, Jones JE, Carson CA (2009) Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. J Appl Microbiol 106:634–641

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Mari Rodríguez de Evgrafov and Søren Bastholm for valuable discussions. This work was supported by the Danish EPA (ColiBox), and the Danish Council for Strategic Research, the project SENSOWAQ—Sensors for Monitoring and Control of Water Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Roslev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roslev, P., Bukh, A.S. State of the art molecular markers for fecal pollution source tracking in water. Appl Microbiol Biotechnol 89, 1341–1355 (2011). https://doi.org/10.1007/s00253-010-3080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3080-7

Keywords

Navigation