Skip to main content
Log in

Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes are powerful catalysts for biosensor and biofuel cell electrodes due to their unique substrate specificity. This specificity is defined by the amino acid chain's complex three-dimensional structure based on non-covalent forces, being also responsible for the very limited enzyme lifetime of days to weeks. Many electrochemical applications, however, would benefit from lifetimes over months to years. This mini-review provides a critical overview of strategies and ideas dealing with the problem of short enzyme lifetime, which limits the overall lifetime of bioelectrochemical electrodes. The most common approaches aim to stabilize the enzyme itself. Various immobilization techniques have been used to reduce flexibility of the amino acid chain by introducing covalent or non-covalent binding forces to external molecules. The enzyme can also be stabilized using genetic engineering methods to increase the binding forces within the protein or by optimizing the environment in order to reduce destabilizing interactions. In contrast, renewing the inactivated catalyst decouples overall system lifetime from the limited enzyme lifetime and thereby promises theoretically unlimited electrode lifetimes. Active catalyst can be supplied by exchanging the electrolyte repeatedly. Alternatively, integrated microorganisms can display the enzymes on their surface or secrete them to the electrolyte, allowing unattended power supply for long-term applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atanasov P, Wilkins E (1994) Biosensor for continuous glucose monitoring. Biotechnol Bioeng 43:262–266

    Article  CAS  Google Scholar 

  • Atanasov P, Yang S, Salehi C, Ghindilis AL, Wilkins E (1996) Short-term canine implantation of a glucose monitoring-telemetry device. Med Eng Phys 18:632–640

    Article  CAS  Google Scholar 

  • Atanasov P, Yang S, Salehi C, Ghindilis AL, Wilkins E, Schade D (1997) Implantation of a refillable glucose monitoring-telemetry device. Biosens Bioelectron 12:669–680

    Article  CAS  Google Scholar 

  • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  CAS  Google Scholar 

  • Binyamin G, Chen T, Heller A (2001) Sources of instability of ‘wired’ enzyme anodes in serum: urate and transition metal ions. J Electroanal Chem 500:604–611

    Article  CAS  Google Scholar 

  • Brito P, Turner APF (2010) Mediated biocatalytic electrodes and enzyme stabilisation for power generation. Electronanl 22:732–743

    Article  CAS  Google Scholar 

  • Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    Article  CAS  Google Scholar 

  • Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14:443–456

    Article  CAS  Google Scholar 

  • Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L (2009) Surface display of redox enzymes in microbial fuel cells. J Amer Chem Soc 131:12052–12053

    Article  CAS  Google Scholar 

  • Fu K, Klibanov AM, Langer R (2000) Protein stability in controlled-release systems. Nat Biotechnol 18:24–25

    Article  CAS  Google Scholar 

  • Gamburzev S, Atanasov P, Wilkins E (1996) Performance of glucose biosensor based on oxygen electrode in physiological fluids and at body temperature. Sens Actuators B Chem 30:179–183

    Article  Google Scholar 

  • Güven G, Prodanovic R, Schwaneberg U (2010) Protein engineering—an option for enzymatic biofuel cell design. Electronanl 22:765–775

    Google Scholar 

  • Hageman MJ (1988) The role of moisture in protein stability. Drug Dev Ind Pharm 14:2047–2070

    Article  CAS  Google Scholar 

  • Igarashi S, Sode K (2003) Stabilization of quaternary structure of water-soluble quinoprotein glucose dehydrogenase. Mol Biotechnol 24:97–103

    Article  CAS  Google Scholar 

  • Katchalskikatzir E (1993) Immobilized enzymes—learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  CAS  Google Scholar 

  • Kerr J, Minteer SD (2006) Development of lipoxygenase bioanodes for biofuel cells. Abs Pap Am Chem Soc 231:352, PMSE

    Google Scholar 

  • Kubo W, Nomoto T (2008) Microbial electrode and fuel cell and sensor using the same. US 2008/0138663 A1

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918

    Article  CAS  Google Scholar 

  • Meyer M, Wohlfahrt G, Knäblein J, Schomburg D (1998) Aspects of the mechanism of catalysis of glucose oxidase: a docking, molecular mechanics and quantum chemical study. J Comput Aided Mol Des 12:425–440

    Article  CAS  Google Scholar 

  • Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234

    Article  CAS  Google Scholar 

  • Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196

    Article  CAS  Google Scholar 

  • Moreland J, Gramada A, Buzko O, Zhang Q, Bourne P (2005) The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinforma 6:21

    Article  Google Scholar 

  • Oike M, Togo M, Kaji H, Abe T, Nishizawa M (2008) Miniatured biofuel cells automatically relayed for longer-term power generation. Proceedings of PowerMEMS 2008 + microEMS 2008. Sendai, Japan, pp 441–444

  • Okuda J, Sode K (2004) PQQ glucose dehydrogenase with novel electron transfer ability. Biochem Biophys Res Commun 314:793–797

    Article  CAS  Google Scholar 

  • Rubenwolf S, Kestel J, Kerzenmacher S, Zengerle R, von Stetten F (2009) Enhancing the lifetime of laccase-based biofuel cell cathodes by sequential renewal of enzyme. 60th Annual Meeting of the International Society of Electrochemistry. Beijing, China, s01-P-011

  • Rubenwolf S, Strohmeier O, Kloke A, Kerzenmacher S, Zengerle R, von Stetten F (2010) Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior. Biosens Bioelectron 26:841–845

    Article  CAS  Google Scholar 

  • Sode K, Igarashi S, Morimoto A, Yoshida H (2002) Construction of engineered water-soluble PQQ glucose dehydrogenase with improved substrate specificity. Biocatal Biotransform 20:405–412

    Article  CAS  Google Scholar 

  • Togo M, Oike M, Kaji H, Abe T, Nishizawa M (2008) Stepwise electric power generation for prolonging lifetime of miniaturized biofuel cell. Proceedings of the 214th Meeting of the Electrochemical Society, Sendai, Japan, p 1422

  • Voet D, Voet JG, Pratt CW (1999) Fundamentals of biochemistry. Wiley, New York

    Google Scholar 

  • Wilkins E, Atanasov P, Muggenburg BA (1995) Integrated implantable device for long-term glucose monitoring. Biosens Bioelectron 10:485–494

    Article  CAS  Google Scholar 

  • Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ (1999) 1.8 and 1.9 angstrom resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr D Biol Crystallogr 55:969–977

    Article  CAS  Google Scholar 

  • Woias P, Manoli Y, Nann T, von Stetten F (2005) Energy harvesting for autonomous microsystems. mstnews 4:42–45

    Google Scholar 

  • Xie SL, Wilkins E (1991) Rechargeable glucose electrodes for long-term implantation. J Biomed Eng 13:375–378

    Article  CAS  Google Scholar 

  • Yamaguchi M, Tahara Y, Nakano A, Taniyama T (2007) Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris. Protein Expr Purif 55:273–278

    Article  CAS  Google Scholar 

  • Yamaguchi M, Nakano A, Taniyama T (2008) Yeast transformant-based glucose biosensor for implantable application. Sens Mater 20:131–141

    CAS  Google Scholar 

  • Yang S, Atanasov P, Wilkins E (1997) Development of a dual glucose-oxygen sensor system for continuous in vivo monitoring. J Clin Eng 22:55–63

    Google Scholar 

  • Ye JS, Wen Y, Zhang WD, Cui HF, Xu GQ, Sheu FS (2005) Electrochemical biosensing platforms using phthalocyanine-functionalized carbon nanotube electrode. Electronanl 17:89–96

    Article  CAS  Google Scholar 

  • Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K (2005) Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens Bioelectron 20:2145–2150

    Article  CAS  Google Scholar 

  • Zhu ZW, Momeu C, Zakhartsev M, Schwaneberg U (2006) Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens Bioelectron 21:2046–2051

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the German Research Foundation (DFG) through the Ph.D. program “Micro Energy Harvesting” (GRK 1322) and the German Ministry of Education and Research (BMBF, Projektträger Jülich) under the program “Bioenergie2021” (Grant No. 03SF0382) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kerzenmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubenwolf, S., Kerzenmacher, S., Zengerle, R. et al. Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl Microbiol Biotechnol 89, 1315–1322 (2011). https://doi.org/10.1007/s00253-010-3073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3073-6

Keywords

Navigation