Skip to main content
Log in

Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blomberg L, Henriksson A, Conway P (1993) Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl Environ Microbiol 59(1):34–39

    CAS  Google Scholar 

  • Buist G (1997) AcmA of Lactococcus lactis, a cell-binding major autolysin. University of Groningen, Netherlands

    Google Scholar 

  • Buist G, Kok J, Leenhouts K, Dabrowska M, Venema G, Haandrikman A (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177(6):1554–1563

    CAS  Google Scholar 

  • Chin’ombe N, Bourn W, Williamson A, Shephard E (2009) Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice. Virol J 6(87):1–9

    Google Scholar 

  • Chowdhury S, Omar A, Aini I, Hair-Bejo M, Jamaluddin A, Md-Zain B, Kono Y (2003) Pathogenicity, sequence and phylogenetic analysis of Malaysian chicken anaemia virus obtained after low and high passages in MSB-1 cells. Arch Virol 148(12):2437–2448

    Article  CAS  Google Scholar 

  • Dertzbaugh M (1998) Genetically engineered vaccines: an overview. Plasmid 39(2):100–113

    Article  CAS  Google Scholar 

  • Dieye Y, Hoekman A, Clier F, Juillard V, Boot H, Piard J (2003) Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 69(12):7281–7288

    Article  CAS  Google Scholar 

  • Feng C, Li Q, Zhang X, Dong K, Hu B, Guo X (2009) Immune strategies using single-component LipL32 and multi-component recombinant LipL32-41-OmpL1 vaccines against leptospira. Braz J Med Biol Res 42(9):796–803

    Article  CAS  Google Scholar 

  • Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Cytokines. In: Freeman WH (ed) Immunology, 5th edn. New York, NY

  • Han R, Cladel N, Reed C, Peng X, Budgeon L, Pickel M, Christensen N (2000) DNA vaccination prevents and/or delays carcinoma development of papillomavirus-induced skin papillomas on rabbits. J Virol 74(20):9712

    Article  CAS  Google Scholar 

  • Kim S, Sung H, Han J, Jackwood D, Kwon H (2004) Protection against very virulent infectious bursal disease virus in chickens immunized with DNA vaccines. Vet Microbiol 101(1):39–51

    Article  CAS  Google Scholar 

  • Koch G, van Roozelaar D, Verschueren C, van der Eb A, Noteborn M (1995) Immunogenic and protective properties of chicken anaemia virus proteins expressed by baculovirus. Vaccine 13(8):763–770

    Article  CAS  Google Scholar 

  • Lacorte C, Lohuis H, Goldbach R, Prins M (2007) Assessing the expression of chicken anemia virus proteins in plants. Virus Res 129(2):80–86

    Article  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  • Lee M, Roussel Y, Wilks M, Tabaqchali S (2001) Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine 19(28–29):3927–3935

    Article  CAS  Google Scholar 

  • Lehtoranta L, Villberg A, Santanen R, Ziegler T (2009) A novel, colorimetric neutralization assay for measuring antibodies to influenza viruses. J Virol Meth 159(2):271–276

    Article  CAS  Google Scholar 

  • Lin J, Savage D (1984) Host specificity of the colonization of murine gastric epithelium by lactobacilli. FEMS Microbiol Lett 24(1):67–71

    Article  Google Scholar 

  • Maggi T, Oggioni M, Medaglini D, Bianchi Bandinelli M, Soldateschi D, Wiesmüller K, Muller C, Valensin P, Pozzi G (2000) Expression of measles virus antigens in Streptococcus gordonii. New Microbiol 23(2):119–128

    CAS  Google Scholar 

  • Malo A, Weingarten M (1995) Determination of the minimum protective neutralizing antibody titer to CAV in adult chickens. Intervet VSD Newsletter 11:1–5

    Google Scholar 

  • Noteborn M, Verschueren C, Koch G, Van der Eb A (1998) Simultaneous expression of recombinant baculovirus-encoded chicken anaemia virus (CAV) proteins VP1 and VP2 is required for formation of the CAV-specific neutralizing epitope. J Gen Virol 79(12):3073

    CAS  Google Scholar 

  • Okano K, Zhang Q, Kimura S, Narita J, Tanaka T, Fukuda H, Kondo A (2008) System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of Lactic Acid Bacteria. Appl Environ Microbiol 74(4):1117–1123

    Article  CAS  Google Scholar 

  • Otaki Y, Saito K, Tajima M, Momura Y (1992) Persistence of maternal antibody to chicken anemia agent and its effect on the susceptibility of young chicken. Avian Pathol 21(1):147–151

    Article  CAS  Google Scholar 

  • Raha A, Varma N, Yusoff K, Ross E, Foo H (2005) Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 68(1):75–81

    Article  CAS  Google Scholar 

  • Reveneau N, Geoffroy M, Locht C, Chagnaud P, Mercenier A (2002) Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 20(13–14):1769–1777

    Article  CAS  Google Scholar 

  • Ribeiro L, Azevedo V, Loir Y, Oliveira S, Dieye Y, Piard J, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68(2):910–916

    Article  CAS  Google Scholar 

  • Rosenberger J, Cloud S (1989) The isolation and characterization of chicken anemia agent (CAA) from broilers in the United States. Avian Dis 33(4):707–713

    Article  CAS  Google Scholar 

  • Rosenberger J, Cloud S (1998) Chicken anemia virus. Poult Sci 77(8):1190

    CAS  Google Scholar 

  • Saif YM (2003) Diseases of poultry, 11th edn. Iowa State University Press, Ames, IA USA

    Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. CSHL press, New York

    Google Scholar 

  • Schat K (2009) Chicken anemia virus. Curr Top Microbiol Immunol 331:151–183

    Article  CAS  Google Scholar 

  • Scheppler L, Vogel M, Zuercher A, Zuercher M, Germond J, Miescher S, Stadler B (2002) Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine 20(23–24):2913–2920

    Article  CAS  Google Scholar 

  • Seegers J (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20(12):508–515

    Article  CAS  Google Scholar 

  • Steen A, Buist G, Horsburgh G, Venema G, Kuipers O, Foste S, Kok J (2005) AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J 272(11):2854–2868

    Article  CAS  Google Scholar 

  • Stover C, Bansal G, Hanson M, Burlein J, Palaszynski S, Young J, Koenig S, Young D, Sadziene A, Barbour A (1993) Protective immunity elicited by recombinant bacilli Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med 178(1):197–209

    Article  CAS  Google Scholar 

  • Tannock G, Szylit O, Duval Y, Raibaud P (1982) Colonisation of tissue surfaces in the gastrointestinal tract of gnotobiotic animals by Lactobacillus strains. Can J Microbiol 28(10):1196–1198

    Article  CAS  Google Scholar 

  • Vaughan E, Molletb B, deVos W (1999) Functionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Curr Opin Biotechnol 10(5):505–510

    Article  CAS  Google Scholar 

  • Vielitz E, Landgraf H (1988) Anaemia-dermatitis of broilers: field observations on its occurrence, transmission and prevention. Avian Pathol 17(1):113–120

    Article  CAS  Google Scholar 

  • Wells J, Wilson P, Norton P, Gasson M, Le Page R (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8(6):1155–1162

    Article  CAS  Google Scholar 

  • Yuasa N, Noguchi T, Furuta K, Yoshida I (1980) Maternal antibody and its effect on the susceptibility of chicks to chicken anemia agent. Avian Dis 24(1):197–201

    Article  Google Scholar 

  • Zegers N, Kluter E, van der Stap H, van Dura E, van Dalen P, Shaw M, Baillie L (1999) Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. J Appl Microbiol 87(2):309–314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Razieh Monjezi for her assistance in the oral immunization. Hassan Moeini is sponsored under the Graduate Research Fellowship, Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khatijah Yusoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeini, H., Rahim, R.A., Omar, A.R. et al. Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus. Appl Microbiol Biotechnol 90, 77–88 (2011). https://doi.org/10.1007/s00253-010-3050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3050-0

Keywords

Navigation