Skip to main content

Advertisement

Log in

Production of arabitol from glycerol: strain screening and study of factors affecting production yield

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol is a major by-product from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotolerant, were first screened in this study. No strains were found to produce large amounts of xylitol as the dominant metabolite. Some produced polyol mixtures that might present difficulties to downstream separation and purification. Several Debaryomyces hansenii strains produced arabitol as the predominant metabolite with high yields, and D. hansenii strain SBP-1 (NRRL Y-7483) was chosen for further study on the effects of several growth conditions. The optimal temperature was found to be 30°C. Very low dissolved oxygen concentrations or anaerobic conditions inhibited polyol yields. Arabitol yield improved with increasing initial glycerol concentrations, reaching approximately 50% (w/w) with 150 g/L initial glycerol. However, the osmotic stress created by high salt concentrations (≥50 g/L) negatively affected arabitol production. Addition of glucose and xylose improved arabitol production while addition of sorbitol reduced production. Results from this work show that arabitol is a promising value-added product from glycerol using D. hansenii SBP-1 as the producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124(2):123–130

    Article  CAS  Google Scholar 

  • Babel W, Hofmann KH (1982) The relation between the assimilation of methanol and glycerol in yeasts. Arch Microbiol 132(2):179–184

    Article  CAS  Google Scholar 

  • Bernard EM, Christiansen KJ, Tsang SF, Kiehn TE, Armstrong D (1981) Rate of arabinitol production by pathogenic yeast species. J Clin Microbiol 14(2):189–194

    CAS  Google Scholar 

  • Bisping B, Baumann U, Simmering R (1996) Effect of immobilization on polyol production by Pichia farinosa. Prog Biotechnol 11:395–401

    Article  CAS  Google Scholar 

  • Blakley ER, Spencer JF (1962) Studies on the formation of D-arabitol by osmophilic yeasts. Can J Biochem Physiol 40:1737–1748

    CAS  Google Scholar 

  • Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Cat Today 106(1–4):190–192

    Article  CAS  Google Scholar 

  • Buhner J, Agblevor FA (2004) Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotechnol 119(1):13–30

    Article  CAS  Google Scholar 

  • Crick R (1961) Improvements in or relating to sweetening agents for food. vol. US patent 884,961

  • Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281(1–2):225–231

    Article  CAS  Google Scholar 

  • Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag 44(13):2093–2109

    Article  CAS  Google Scholar 

  • Gancedo C, Gancendo JM, Sols A (1968) Pathways of utilization and production. Eur J Biochem 5(2):165–172

    Article  CAS  Google Scholar 

  • Gare F (2003) The sweet miracle of xylitol: the all natural sugar substitute approved by the FDA as a food additive. Basic Health, North Bergen

    Google Scholar 

  • Groleau D, Chevalier P, Yuen T (1995) Production of polyols and ethanol by the osmophilic yeast Zygosaccharomyces rouxii. Biotechnol Lett 17(3):315–320

    Article  CAS  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678

    Article  CAS  Google Scholar 

  • Hajny GJ (1964) D-Arabitol production by Endomycopsis chodati. Appl Environ Microbiol 12(1):87–92

    CAS  Google Scholar 

  • Huck JHJ, Roos B, Jakobs C, van der Knaap MS, Verhoeven NM (2004) Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism. Mol Genet Metabol 82(3):231–237

    Article  CAS  Google Scholar 

  • Ingram JM, Wood WA (1965) Enzymatic basis for D-arabitol production by Saccharomyces rouxii 1. J Bacteriol 89(5):1186–1194

    CAS  Google Scholar 

  • Kastner JR, Eiteman MA, Lee SA (2003) Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Appl Microbiol Biotechnol 63(1):96–100

    Article  CAS  Google Scholar 

  • Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29(1):16–19

    Article  CAS  Google Scholar 

  • Krawczyk T (1996) Biodiesel-alternative fuel makes inroads but hurdles remain. Inf 7(8):801–808

    Google Scholar 

  • Lages F, Lucas C (1997) Physiological characterization of mediated glycerol uptake in Saccharomyces cerevisiae. Biochim Biophys Acta 1322:8–18

    Article  CAS  Google Scholar 

  • Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172(4):1769–1774

    CAS  Google Scholar 

  • Le Tourneau D (1966) Trehalose and acyclic polyols in sclerotia of Sclerotinia sclerotiorum. Mycol 58(6):934–942

    Article  Google Scholar 

  • Leathers TD, Dien BS (2000) Xylitol production from corn fibre hydrolysates by a two-stage fermentation process. Process Biochem 35(8):765–769

    Article  CAS  Google Scholar 

  • Liu Y, Liu D, Su Q, Liu J, Xie D (2002) Critical influence of osmotic pressure on continuous production of glycerol by an osmophilic strain of Candida krusei in a multistage cascade bioreactor. Process Biochem 38(3):427–432

    Article  CAS  Google Scholar 

  • McCormick DB, Touster O (1961) Conversion of D-[1–14c] arabitol, l-[1–14c] arabitol, and D-[1–14c] ribitol to liver glycogen in the rat and guinea-pig. Biochim Biophys Acta 54(3):598–600

    Article  Google Scholar 

  • Melaja AJ, Hamalainen L (1977) Process for making xylitol. US patent 4(008):285

    Google Scholar 

  • Mitchell HL (2006) Sweeteners and sugar alternatives in food technology. Blackwell, Oxford

    Book  Google Scholar 

  • National Biodiesel Board (2007) Fuel facts sheets. <http://www.Biodiesel.Org/pdf_files/fuelfactsheets/backgrounder.pdf>

  • Nobre MF, Costa MS (1985) The accumulation of polyols by the yeast Debaryomyces hansenii in response to water stress. Can J Microbiol 31(11):1061–1064

    Article  CAS  Google Scholar 

  • Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Microbiol 54(4):374–392

    Google Scholar 

  • Nozaki H, Suzuki S, Tsuyoshi N, Yokozeki K (2003) Production of D-arabitol by Metschnikowia reukaufii aj14787. Biosci Biotechnol Biochem 67(9):1923–1929

    Article  CAS  Google Scholar 

  • Onishi H, Shiromaru Y (1984) Physiological changes induced by salt stress in a salt-tolerant soy-yeast, Saccharomyces rouxii. FEMS Microbiol Lett 25(2–3):175–178

    Article  CAS  Google Scholar 

  • Saha BC, Sakakibara Y, Cotta MA (2007) Production of D-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34(7):519–523

    Article  CAS  Google Scholar 

  • Scangos GA, Reiner AM (1979) A unique pattern of toxic synthesis in pentitol catabolism: implications for evolution. J Mol Evol 12(3):189–195

    Article  CAS  Google Scholar 

  • Spencer JF (1968) Production of polyhydric alcohols by yeasts. Prog Ind Microbiol 7:1–42

    CAS  Google Scholar 

  • Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Cloning of the xylitol dehydrogenase gene from gluconobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotechnol Biochem 67(3):584–591

    Article  CAS  Google Scholar 

  • Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66(12):2614–2620

    Article  CAS  Google Scholar 

  • Talja RA, Roos YH (2001) Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim Acta 380(2):109–121

    Article  CAS  Google Scholar 

  • Tokuoka K (1993) Sugar- and salt-tolerant yeasts. J Appl Bacteriol 74(2):101–110

    Google Scholar 

  • Van Eck JH, Prior BA, Brandt EV (1989) Accumulation of polyhydroxy alcohols by Hansenula anomala in response to water stress. J Gen Microbiol 135(12):3505–3513

    Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume 1-results of screening for potential candidates from sugars and synthesis gas. DOE/GO-102004-1992. National Renewable Energy Lab, Golden

    Google Scholar 

  • Wilson BL, Mortlock RP (1973) Regulation of D-xylose and D-arabitol catabolism by Aerobacter aerogenes. J Bacteriol 113(3):1404–1411

    CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by a grant from the United Soybean Board (Projects 7435, 8435, and 9435). We thank Karen Ray for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koganti, S., Kuo, T.M., Kurtzman, C.P. et al. Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl Microbiol Biotechnol 90, 257–267 (2011). https://doi.org/10.1007/s00253-010-3015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3015-3

Keywords

Navigation