Skip to main content

Advertisement

Log in

Current progress in the study on biosynthesis and regulation of ganoderic acids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ganoderic acids (GAs) isolated from Ganoderma lucidum, which have shown remarkable pharmacological activities and a variety of therapeutic effects on a number of human diseases, have provided an important resource for the development of new medicines. The yield of GAs in field cultivation is still limited, which is mainly due to a scarcity of information regarding its biosynthesis pathway and its regulation. Here, we review the recent publication that has been made in the biosynthesis and regulation of GAs. From these studies, researchers have identified part of the biosynthesis pathway of GAs named mevalonate pathway. They have cloned and characterized the genes involved in the biosynthesis pathway. Additionally, they found that expression of the genes involved in GA biosynthesis is closely related to the impact of environmental factors through transcriptional profiling analysis. Moreover, this review focuses on suggesting new directions for studying GAs and attempts to gain some insights for better understanding of the biosynthesis and regulation of GAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 3:2189–2206

    Article  Google Scholar 

  • Agnew WS, Popjak G (1978) Squalene synthetase. Solubilization from yeast microsomes of a phospholipid-requiring enzyme. J Biol Chem 253:4574–4583

    CAS  Google Scholar 

  • Baker CH, Matsuda SP, Liu DR, Corey EJ (1995) Molecular cloning of the human gene encoding lanosterol synthase from a liver cDNA library. Biochem Biophys Res Commun 213:154–160

    Article  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    CAS  Google Scholar 

  • Chen DH, Meng Y, Ye HC, Li GF, Chen XY (1998) Cultures of transgenic Artemisia annua hairy root with cadinene synthase gene. Acta Bot Sin 40:711–714

    CAS  Google Scholar 

  • Chen DH, Ye HC, Li GF (1999) Expression of green fluorescent protein gene in transgenic shoots of Artemisia annua. Acta Bot Sin 41:490–493

    CAS  Google Scholar 

  • Chen D, Ye H, Li G (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185

    Article  CAS  Google Scholar 

  • Cheong J, Jung W, Park W (1999) Characterization of an alkali-extracted peptidoglycan from Korean Ganoderma lucidum. Arch Pharm Res 22:515–519

    Article  CAS  Google Scholar 

  • Choi DW, Jung J, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  CAS  Google Scholar 

  • Ding YX, Ou-Yang X, Shang CH, Ren A, Shi L, Li YX, Zhao MW (2008) Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum. Biosci Biotechnol Biochem 72:1571–1579

    Article  CAS  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  CAS  Google Scholar 

  • el-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657

    Article  CAS  Google Scholar 

  • Eo SK, Kim YS, Lee CK, Han SS (1999a) Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J Ethnopharmacol 68:175–181

    Article  CAS  Google Scholar 

  • Eo SK, Kim YS, Lee CK, Han SS (1999b) Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum. J Ethnopharmacol 68:129–136

    Article  CAS  Google Scholar 

  • Fang QH, Zhong JJ (2002a) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 37:769–774

    Article  CAS  Google Scholar 

  • Fang QH, Zhong JJ (2002b) Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochem Eng J 10:61–65

    Article  CAS  Google Scholar 

  • Fang QH, Zhong JJ (2002c) Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog 18:51–54

    Article  CAS  Google Scholar 

  • Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37:1375–1379

    Article  CAS  Google Scholar 

  • Ferguson JJ Jr, Durr JF, Rudney H (1958) Enzymatic reduction of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonic acid in yeast. Fed Proc 17:219

    Google Scholar 

  • Fujisaki S, Takahashi I, Hara H, Horiuchi K, Nishino T, Nishimura Y (2005) Disruption of the structural gene for farnesyl diphosphate synthase in Escherichia coli. J Biochem 137:395–400

    Article  CAS  Google Scholar 

  • Gao JJ, Min BS, Ahn EM, Nakamura N, Lee HK, Hattori M (2002) New triterpene aldehydes, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem Pharm Bull (Tokyo) 50:837–840

    Article  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  Google Scholar 

  • Hayashi H, Huang P, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44:404–411

    Article  CAS  Google Scholar 

  • Hey SJ, Powers SJ, Beale MH, Hawkins ND, Ward JL, Halford NG (2006) Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol J 4:219–229

    Article  CAS  Google Scholar 

  • Hirotani M, Asaka I, Furuya T (1990) Investigation of the biosynthesis of 3¦Á-hydroxy triterpenoids, ganoderic acids T and S, by application of a feeding experiment using [1, 2–13 C 2] acetate. J Chem Soc Perkin Trans 1:2751–2754

    Article  Google Scholar 

  • Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Oshikubo M, Kimura Y, Asano T, Nomura A, Nishino H (2003) Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein–Barr virus activation. J Nat Prod 66:1582–1585

    Article  CAS  Google Scholar 

  • Ketchum RE, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105

    Article  CAS  Google Scholar 

  • Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, Yamasaki K, Komoda Y, Nakamura H, Ishihara S, Uchida M (1985) The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes. Chem Pharm Bull (Tokyo) 33:1367–1374

    CAS  Google Scholar 

  • Komoda Y, Shimizu M, Sonoda Y, Sato Y (1989) Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull (Tokyo) 37:531–533

    CAS  Google Scholar 

  • Li N, Liu XH, Zhou J, Li YX, Zhao MW (2006) Analysis of influence of environmental conditions on ganoderic acid content in Ganoderma lucidum using orthogonal design. J Microbiol Biotechnol 16:1940–1946

    CAS  Google Scholar 

  • Liang CX, Li YB, Xu JW, Wang JL, Miao XL, Tang YJ, Gu T, Zhong JJ (2010) Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Appl Microbiol Biotechnol 86:1367–1374

    Article  CAS  Google Scholar 

  • Lin ZB (1979) The current pharmacological research on Ganoderma lucidum in China. Acta Pharm Sin (in Chinese) 14:183–192

    CAS  Google Scholar 

  • Lin SB, Li CH, Lee SS, Kan LS (2003) Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci 72:2381–2390

    Article  CAS  Google Scholar 

  • Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20

    Article  CAS  Google Scholar 

  • Lynen F, Henning U, Bublitz C, Sorbo B, Kroplin-Rueff L (1958) The chemical mechanism of acetic acid formation in the liver. Biochem Z 330:269–295

    CAS  Google Scholar 

  • Lynen F, Agranoff BW, Eggerer H, Henning U, Möslein EM (1959) Gamma, gamma-dimethyl-allyl-pyrophosphat und geranyl-pyrophosphat, biologische Vorstufen des Squalens Zur Biosynthese der Terpene, VI1. Angew Chem 71:657–663

    Article  CAS  Google Scholar 

  • Ma J, Ye Q, Hua Y, Zhang D, Cooper R, Chang MN, Chang JY, Sun HH (2002) New lanostanoids from the mushroom Ganoderma lucidum. J Nat Prod 65:72–75

    Article  CAS  Google Scholar 

  • Masferrer A, Arro M, Manzano D, Schaller H, Fernandez-Busquets X, Moncalean P, Fernandez B, Cunillera N, Boronat A, Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  Google Scholar 

  • Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull (Tokyo) 46:1607–1612

    CAS  Google Scholar 

  • Min BS, Gao JJ, Nakamura N, Hattori M (2000) Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem Pharm Bull (Tokyo) 48:1026–1033

    CAS  Google Scholar 

  • Mizushina Y, Hanashima L, Yamaguchi T, Takemura M, Sugawara F, Saneyoshi M, Matsukage A, Yoshida S, Sakaguchi K (1998) A mushroom fruiting body-inducing substance inhibits activities of replicative DNA polymerases. Biochem Biophys Res Commun 249:17–22

    Article  CAS  Google Scholar 

  • Mizushina Y, Takahashi N, Hanashima L, Koshino H, Esumi Y, Uzawa J, Sugawara F, Sakaguchi K (1999) Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorg Med Chem 7:2047–2052

    Article  CAS  Google Scholar 

  • Morigiwa A, Kitabatake K, Fujimoto Y, Ikekawa N (1986) Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull (Tokyo) 34:3025–3028

    CAS  Google Scholar 

  • Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394

    Article  CAS  Google Scholar 

  • Ren A, Qin L, Shi L, Dong X, da Mu S, Li YX, Zhao MW (2010) Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum. Bioresour Technol 101:6785–6790

    Article  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    CAS  Google Scholar 

  • Sasiak K, Rilling HC (1988) Purification to homogeneity and some properties of squalene synthetase. Arch Biochem Biophys 260:622–627

    Article  CAS  Google Scholar 

  • Sato N, Zhang Q, Ma CM, Hattori M (2009) Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem Pharm Bull (Tokyo) 57:1076–1080

    Article  CAS  Google Scholar 

  • Schwender J, Zeidler J, Groner R, Muller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    Article  CAS  Google Scholar 

  • Schwender J, Gemunden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  CAS  Google Scholar 

  • Shang CH, Zhu F, Li N, Ou-Yang X, Shi L, Zhao MW, Li YX (2008) Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast. Biosci Biotechnol Biochem 72:1333–1339

    Article  CAS  Google Scholar 

  • Shang CH, Shi L, Ren A, Qin L, Zhao MW (2010) Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from Ganoderma lucidum. Biosci Biotechnol Biochem 74:974–978

    Article  CAS  Google Scholar 

  • Shiao MS (1992) Triterpenoid natural products in the fungus Ganoderma lucidum. J Chin Chem Soc 39:669–674

    CAS  Google Scholar 

  • Shiao MS (2003) Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem Rec 3:172–180

    Article  CAS  Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SP, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2002) Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 31:20–28

    Article  CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2003a) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol 32:478–484

    Article  CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2003b) Scale-up of a liquid static culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum. Biotechnol Prog 19:1842–1846

    Article  CAS  Google Scholar 

  • Tang YJ, Zhang W, Zhong JJ (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresour Technol 100:1852–1859

    Article  CAS  Google Scholar 

  • Wang GY, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201

    Article  CAS  Google Scholar 

  • Wang H, Ng TB (2006) Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27:27–30

    Article  Google Scholar 

  • Xie JT, Wang CZ, Wicks S, Yin JJ, Kong J, Li J, Li YC, Yuan CS (2006) Ganoderma lucidum extract inhibits proliferation of SW 480 human colorectal cancer cells. Exp Oncol 28:25–29

    CAS  Google Scholar 

  • Xu P, Ding ZY, Qian Z, Zhao CX, Zhang KC (2008) Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme Microb Technol 42:325–331

    Article  CAS  Google Scholar 

  • Xu JW, Xu YN, Zhong JJ (2009) Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum. Appl Microbiol Biotechnol 85:941–948

    Article  Google Scholar 

  • Yang M, Wang X, Guan S, Xia J, Sun J, Guo H, Guo DA (2007) Analysis of triterpenoids in ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 18:927–939

    Article  CAS  Google Scholar 

  • Yang FC, Yang MJ, Cheng SH (2009) A novel method to enhance the mycelia production of Ganoderma lucidum in submerged cultures by polymer additives and agitation strategies. J Taiwan Inst Chem Eng 40:148–154

    Article  CAS  Google Scholar 

  • You YH, Lin ZB (2002) Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 23:787–791

    CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  CAS  Google Scholar 

  • Zhang W, Tang YJ (2008) A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides. Biotechnol Prog 24:1249–1261

    Article  CAS  Google Scholar 

  • Zhang Q, Zuo F, Nakamura N, Ma CM, Hattori M (2009a) Metabolism and pharmacokinetics in rats of ganoderiol F, a highly cytotoxic and antitumor triterpene from Ganoderma lucidum. J Nat Med 63:304–310

    Article  CAS  Google Scholar 

  • Zhang WX, Tang YJ, Zhong JJ (2009b) Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum. Bioprocess Biosyst Eng 33:683–690. doi:10.1007/s00449-009-0379-9

    Article  Google Scholar 

  • Zhao MW, Zhong JY, Liang WQ, Wang N, Chen MJ, Zhang DB, Pan YJ, Jong SC (2004) Analysis of squalene synthase expression during the development of Ganoderma lucidum. J Microbiol Biotechnol 14:116–120

    CAS  Google Scholar 

  • Zhao MW, Liang WQ, Zhang DB, Wang N, Wang CG, Pan YJ (2007) Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J Microbiol Biotechnol 17:1106–1112

    CAS  Google Scholar 

  • Zhu M, Chang Q, Wong LK, Chong FS, Li RC (1999) Triterpene antioxidants from Ganoderma lucidum. Phytother Res 13:529–531

    Article  CAS  Google Scholar 

  • Zhu LW, Zhong JJ, Tang YJ (2008) Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochem 43:1359–1370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project No. 30970042, 30871767, and J0730647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwen Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Ren, A., Mu, D. et al. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol 88, 1243–1251 (2010). https://doi.org/10.1007/s00253-010-2871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2871-1

Keywords

Navigation