Skip to main content
Log in

Perspectives to produce positively or negatively charged polyhydroxyalkanoic acids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An overview is provided on the possibilities of producing positively and negatively charged poly(β-hydroxyalkanoates), PHAs. A large variety of bacterial polyesters with functionalized terminal side chains can be produced in microbial fermentation processes by a direct polymerization of respective carbon sources, that is, carbon sources that carry functional groups in their ω-position. However, charged PHAs are not accessible by a direct approach and must be synthesized via polymer-analogous reactions of functionalized bacterial polyesters. PHA polyanions are produced by converting the terminal functional groups into carboxylate groups, while PHA polycations are produced by introducing terminal amino groups. PHAs with terminal vinyl groups emerged as most suitable PHA precursors, as they can be produced in relatively high yields and the double bonds are sufficiently reactive. The oxidation of vinyl groups yields PHA polyanions. The conversion of terminal vinyl groups into epoxides with a subsequent ring-opening reaction with an amine yields PHA polycations. Other functionalized PHA that potentially lend themselves to polymer-analogous reactions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Bear MM, Leboucher-Durand MA, Langlois V, Lenz RW, Goodwin S, Guerin P (1997) Bacteria; poly-3-hydroxyalkenoates with epoxy groups in the side chain. React Funct Polym 34:65–77

    Article  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 25:6565–6578

    Article  CAS  Google Scholar 

  • Chung CW, Kim HW, Kim YB, Rhee YH (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int J Biol Macromol 32:17–22

    Article  CAS  Google Scholar 

  • Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoatyes and 3-hydroxy-ω-chloralkanoates. Macromolecules 23:3705–3707

    Article  CAS  Google Scholar 

  • Domenek S, Langlois V, Renard E (2007) Bacterial polyesters grafted with poly(ethylene glycol): behaviour in aqueous media. Polym Degrad Stab 92:1384–1392

    Article  CAS  Google Scholar 

  • Doudoroff M, Stanier RY (1959) Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183:1440

    Article  CAS  Google Scholar 

  • Eroglu MS, Hazer B, Ozturk T, Caykara T (2005) Hydroxylation of pendant vinyl groups of poly(3-hydroxyundec-10-enoate) in high yield. J Appl Polym Sci 97(5):2132–2139

    Article  CAS  Google Scholar 

  • Fischer H, Erdmann S, Holler E (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase. Biochemistry 28:5219–5226

    Article  CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990) Production of unsaturated polyesters by Pseudomonas oleovorans Int. J Biol Macromol 12:85–91

    Article  CAS  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35(20):43584367

    Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers: 2. Sulfur vulcanization. Polymer 35(20):4368

    Article  CAS  Google Scholar 

  • Grande D, Renard E, Lanlois V, Rohman G, Timbart L, Guerin P (2005) Multifunctional polyester-based materials with controlled degradability”. In: Khemani K, Scholz C (ed) Degradable polymers and materials principles and practice, ACS symposium series 939, Washington, DC, pp 140–155

  • Hu YJ, Wei X, Zhao W, Liu YS, Chen GQ (2009) Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater 5(4):1115–1125

    Article  CAS  Google Scholar 

  • Kim O, Gross RA, Hammar WJ, Newmark RA (1996) Microbial synthesis of poly(b-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29:4572–4581

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1996) Poly-3-hydroxyalkanoates containing unsaturated repeating units produced by Pseudomonas oleovorans. Polym Sci Polym Chem Ed 33:1367–1374

    Google Scholar 

  • Kim YB, Rhee YH, Lenz RW, Fuller RC (1997) Poly(3-hydroxyalkanoate)s produced by pseudomonas oleovorans grown by feeding nonanoic and 10-undecenoic acid in sequence. Polym J 29(11):894–898

    Article  CAS  Google Scholar 

  • Kim DY, Kim YB, Rhee YH (1998) Bacterial poly(3-hydroxyalkanoates) bearing carbon–carbon triple bonds. Macromolecules 31:4760–4763

    Article  CAS  Google Scholar 

  • Kim SN, Shim SC, Kim DY, Rhee YH, Kim YB (2001) Photochemical crosslinking and enzymatic degradation of poly(3-hydroxyalkanoate)s for micropatterning in photolithography. Macromol Rapid Commun 22:1066–1071

    Article  CAS  Google Scholar 

  • Kim HW, Chung CW, Kim YB, Rhee YH (2005) Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-co-glycolide). Int J Biol Macromol 37:221–226

    Article  CAS  Google Scholar 

  • Kurth N, Renard E, Brachet F, Robic D, Guerin P, Bourbouze R (2002) Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer 43:1095–1101

    Article  CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxy-alkanoates and poly-(R)-3-hydroxy-alkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  Google Scholar 

  • Lee MY, Park WH (2000) Preparation of bacterial copolyesters with improved hydrophilicity by carboxylation. Macromol Chem Phys 201:2771–2774

    Article  CAS  Google Scholar 

  • Lee MY, Park WH, Lenz RW (2000) Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41:1703–1709

    Article  CAS  Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et de polymerisation de l’ acide β-oxybutyrique. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  • Lemoigne M (1927) Etudes sur l’autolyse microbienne. Origine de I’acide 1-oxybutyrique formo par autolyse. Annales de l’Institut Pasteur (Paris) 41:148–165

    CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolec 6(1):1–8

    Article  CAS  Google Scholar 

  • Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Rev 103:207–214

    Article  CAS  Google Scholar 

  • Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  • Park WH, Lenz RW, Goodwin S (1998) Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 31:1480–1486

    Article  CAS  Google Scholar 

  • Qu XH, Wu Q, Zhang KY, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomater 27:3540–3548

    CAS  Google Scholar 

  • Renard E, Walls M, Guerin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85:779–787

    Article  CAS  Google Scholar 

  • Renard E, Poux A, Timbart L, Langlois V, Guerin P (2005) Preparation of novel artificial bacterial polyesters modified with pendant hydroxyl groups. Biomacromolec 6:891–896

    Article  CAS  Google Scholar 

  • Scholz C, Lenz RW, Fuller RC (1994a) Production of Poly-β-hydroxyalkanoates with β-substituents containing terminal ester groups by Pseudomonas oleovorans. Macromol Chem Phys 195:1405–1421

    Article  CAS  Google Scholar 

  • Scholz C, Lenz RW, Fuller RC (1994b) Growth and polymer incorporation of Pseudomonas oleovorans on different esters of heptanoic acid. Macromolecules 27:2886–2889

    Article  CAS  Google Scholar 

  • Sparks J (2007) Modified bacterial polyesters as gene delivery systems. Dissertation, University of Alabama in Huntsville

  • Sparks J, Scholz C (2007) Water-soluble poly(hydroxyalkanoate)s. Polym Prepr 48(2):806

    CAS  Google Scholar 

  • Sparks J, Scholz C (2008) Synthesis and characterization of a cationic poly(β-hydroxalkanoate). Biomacromolec 9(8):2091–2096

    Article  CAS  Google Scholar 

  • Sparks J, Scholz C (2009) Evaluation of a cationic poly(β-hydroxyalkanoate) as a plasmid DNA delivery system. Biomacromolec 10:1715–1719

    Article  CAS  Google Scholar 

  • Staudinger H (1933) Viscosity investigations for the examination of the constitution of natural products of high molecular weight and of rubber and cellulose. Trans Faraday Soc 29:18–32

    Article  CAS  Google Scholar 

  • Steinbüchel A, Valentine HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Weibull C (1953) The protoplasmic constituents of Bacillus megaterium. J Bacteriol 66:696

    CAS  Google Scholar 

  • Williamson DH, Wilkinson JF (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol 19:198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, C. Perspectives to produce positively or negatively charged polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 88, 829–837 (2010). https://doi.org/10.1007/s00253-010-2819-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2819-5

Keywords

Navigation