Skip to main content
Log in

Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Marine microbes are a rich source of bioactive compounds, such as drugs, enzymes, and biosurfactants. To explore the bioactive compounds from our marine natural product library, an oil emulsification assay was applied to discover biosurfactants and bioemulsifiers. A spore-forming bacterial strain from sea mud was found to produce bioemulsifiers with good biosurfactant activity and a broad spectrum of antimicrobial properties. It was identified as Bacillus velezensis H3 using genomic and phenotypic data analysis. This strain was able to produce biosurfactants with an optimum emulsification activity at pH 6.0 and 2% NaCl by using starch as the carbon source and ammonium sulfate as the nitrogen source. The emulsification-guided isolation and purification procedure led to the discovery of the biosurfactant components, which were mainly composed of nC14-surfactin and anteisoC15-surfactin as determined by NMR and MS spectra. These compounds can reduce the surface tension of phosphate-buffered saline (PBS) from 71.8 to 24.8 mN/m. The critical micelle concentrations (CMCs) of C14-surfactin and C15-surfactin in 0.1 M PBS (pH 8.0) were determined to be 3.06 × 10-5 and 2.03 × 10-5 mol/L, respectively. The surface tension values at CMCs for C14-surfactin and C15-surfactin were 25.7 and 27.0 mM/m, respectively. In addition, the H3 biosurfactant exhibited antimicrobial activities against Staphyloccocus aureus, Mycobacterium, Klebsiella peneumoniae, Pseudomonas aeruginosa, and Candida albicans. Thus B. velezensis H3 is an alternative surfactin producer with potential application as an industrial strain for the lipopeptide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta 1713:51–56

    Article  CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Bafana A, Chakrabarti T, Devi SS (2008) Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl Microbiol Biotechnol 77:1139–1144

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  Google Scholar 

  • Baumgart F, Kluge B, Ullrich C, Vater J, Ziessow D (1991) Identification of amino acid substitutions in the lipopeptide surfactin using 2D NMR spectroscopy. Biochem Biophys Res Commun 177:998–1005

    Article  CAS  Google Scholar 

  • Bian J, Song F, Zhang L (2008) Strategies on the construction of high-quality microbial natural product library—a review. Wei Sheng Wu Xue Bao 48:1132–1137

    CAS  Google Scholar 

  • Bian J, Li Y, Wang J, Song FH, Liu M, Dai HQ, Ren B, Gao H, Hu X, Liu ZH, Li WJ, Zhang LX (2009) Amycolatopsis marina sp. nov., an actinomycete isolated from an ocean sediment. Int J Syst Evol Microbiol 59:477–481

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  Google Scholar 

  • Bonmatin JM, Genest M, Petit MC, Gincel E, Simorre JP, Cornet B, Gallet X, Caille A, Labbé H, Vovelle F, Ptak M (1992) Progress in multidimensional NMR investigations of peptide and protein 3-D structures in solution. From structure to functional aspects. Biochimie 74:825–836

    Article  CAS  Google Scholar 

  • Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–Structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    CAS  Google Scholar 

  • Bright JJ, Claydon MA, Soufian M, Gordon DB (2002) Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J Microbiol Meth 48:127–138

    Article  CAS  Google Scholar 

  • Buensanteai N, Yuen GY, Prathuangwong S (2008) The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J Agric Sci 41:101–116

    Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  Google Scholar 

  • Chen CY, Baker SC, Darton RC (2007) The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Meth 70:503–510

    Article  CAS  Google Scholar 

  • Dai HQ, Wang J, Xin YH, Pei G, Tang SK, Ren B, Ward A, Ruan JS, Li WJ, Zhang LX (2009) Verrucosispora sediminis sp. nov., a novel cyclodipeptide-producing actinomycete from the South China Sea. Int J Syst Evol Microbiol.

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  Google Scholar 

  • Debnath M, Paul AK, Bisen PS (2007) Natural bioactive compounds and biotechnological potential of marine bacteria. Curr Pharm Biotechno 8:253–260

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47

    CAS  Google Scholar 

  • Fang C, Lu Z, Sun L, Bie X, Lu F, Huang X (2008) Optimization of fermentation technology for lipopeptides producing bacteria Bacillus amyloliquefaciens ES-2-4. Scientia Agricultura Sinica 41:533–539

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  • Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210

    Article  CAS  Google Scholar 

  • Haddad NIA, Liu XY, Yang SZ, Mu BZ (2008) Surfactin isoforms from Bacillus subtilus HSO121: separation and characterization. Protein Pept Lett 15:265–269

    Article  CAS  Google Scholar 

  • Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of beta-sheet formation for micellization and surface-adsorption of surfactin. Colloids Surface B 4:341–348

    Article  CAS  Google Scholar 

  • Jenny K, Kappeli O, Fiechter A (1991) Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol 36:5–13

    Article  CAS  Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584

    Article  CAS  Google Scholar 

  • Kakinuma A, Ouchida A, Shima T, Sugino H, Isono M, Tamura G, Arima K (1969) Confirmation of the structure of surfactin by mass spectrometry. Agr Biol Chem Tokyo 33:1669–1671

    CAS  Google Scholar 

  • Kim J, Rohlf FJ, Sokal RR (1993) The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 47:471–486

    Article  Google Scholar 

  • Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458

    Article  CAS  Google Scholar 

  • Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol 6:78–84

    CAS  Google Scholar 

  • Kosaric N (1993) Biosurfactants: production, properties, applications. Marcel Dekker, New York

    Google Scholar 

  • Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8

    Article  CAS  Google Scholar 

  • Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13:943–949

    Article  CAS  Google Scholar 

  • Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38

    CAS  Google Scholar 

  • Liu XY, Yang SZ, Mu BZ (2005) Molecular structures of microbial lipopeptides. Biotechnol Bull:18-26.

  • Liu XY, Haddad NIA, Yang SZ, Mu BZ (2007) Structural characterization of eight cyclic lipopeptides produced by Bacillus subtilis HSO121. Protein Pept Lett 14:766–773

    Article  CAS  Google Scholar 

  • Liu XY, Yang SZ, Mu BZ (2008) Isolation and characterization of a C12-lipopeptide produced by Bacillus subtilis HSO121. J Pept Sci 14:864–875

    Article  CAS  Google Scholar 

  • Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67

    Article  CAS  Google Scholar 

  • Maier RM (2003) Biosurfactants: evolution and diversity in bacteria, in: JWB Allen I. Laskin,MG Geoffrey (Eds.), Advances in applied microbiology, Academic Press. pp. 101-121.

  • Mikkola R, Andersson MA, Grigoriev P, Teplova VV, Saris NE, Rainey FA, Salkinoja-Salonen MS (2004) Bacillus amyloliquefaciens strains isolated from moisture-damaged buildings produced surfactin and a substance toxic to mammalian cells. Arch Microbiol 181:314–323

    Article  CAS  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp strain Mis38. J Bacteriol 175:6459–6466

    CAS  Google Scholar 

  • Oguntoyinbo FA (2007) Monitoring of marine Bacillus diversity among the bacteria community of sea water. Afr J Biotechnol 6:163–166

    CAS  Google Scholar 

  • Park CH, Lee J (2009) Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114:430–437

    Article  CAS  Google Scholar 

  • Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10, 898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  Google Scholar 

  • Patil JR, Chopade BA (2001) Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol 91:290–298

    Article  CAS  Google Scholar 

  • Price NP, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271:83–89

    Article  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710

    Article  CAS  Google Scholar 

  • Razafindralambo H, Thonart P, Paquot M (2004) Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J Surfactants Deterg 7:41–46

    Article  CAS  Google Scholar 

  • Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int J Syst Evol Microbiol 55:191–195

    Article  CAS  Google Scholar 

  • Saini HS, Barragan-Huerta BE, Lebron-Paler A, Pemberton JE, Vazquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AA, Maier RM (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015

    Article  CAS  Google Scholar 

  • Sass A, McKew B, Sass H, Fichtel J, Timmis K, McGenity T (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Systems 4:8

    Article  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  Google Scholar 

  • Sivapathasekaran C, Mukherjee S, Samanta R, Sen R (2009) High-performance liquid chromatography purification of biosurfactant isoforms produced by a marine bacterium. Anal Bioanal Chem 395:845–854

    Article  CAS  Google Scholar 

  • Strieker M, Marahiel MA (2009) The structural diversity of acidic lipopeptide antibiotics. Chembiochem 10:607–616

    Article  CAS  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  • Tan NH, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895

    Article  CAS  Google Scholar 

  • Tang JS, Gao H, Hong K, Yu Y, Jiang MM, Lin HP, Ye WC, Yao XS (2007) Complete assignments of 1H and 13C NMR spectral data of nine surfactin isomers. Magn Reson Chem 45:792–796

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Trischman JA, Jensen PR, Fenical W (1994) Halobacillin—a cytotoxic cyclic acylpeptide of the Iturin class produced by a marine Bacillus. Tetrahedron Lett 35:5571–5574

    Article  CAS  Google Scholar 

  • Vanessa W, Christoph S, Rudolf H (2010) Screening concepts for the isolation of biosurfactant producing microorganisms, in: S Ramkrishna (Ed.), Biosurfactants, Springer. pp. 360.

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization—time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Bian J, Tang SK, Ren B, Chen M, Li WJ, Zhang LX (2009) Prauserella marina sp. nov., isolated from ocean sediment of the South China Sea. Int J Syst Evol Microbiol.

  • Wang LT, Lee FL, Tai CJ, Kuo HP (2008) Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol 58:671–675

    Article  CAS  Google Scholar 

  • Yang SZ, Wei DZ, Mu BZ (2006) Determination of the amino acid sequence in a cyclic lipopeptide using MS with DHT mechanism. J Biochem Biophys Methods 68:69–74

    Article  CAS  Google Scholar 

  • Yoneda T, Miyota Y, Furuya K, Tsuzuki T. (2006) Production process of surfactin.

  • Zhang LX, An R, Wang JP, Sun N, Zhang S, Hu JC, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281

    Article  CAS  Google Scholar 

  • Zhang LX, Yan KZ, Zhang Y, Huang R, Bian J, Zheng CS, Sun HX, Chen ZH, Sun N, An R, Min FG, Zhao WB, Zhuo Y, You JL, Song YJ, Yu ZY, Liu ZH, Yang KQ, Gao H, Dai HQ, Zhang XL, Wang J, Fu CZ, Pei G, Liu JT, Zhang S, Goodfellow M, Jiang YY, Kuai J, Zhou GC, Chen XP (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A 104:4606–4611

    Article  CAS  Google Scholar 

  • Zhang Y, Han F (2009) The spreading behaviour and spreading mechanism of new glucosamide-based trisiloxane on polystyrene surfaces. J Colloid Interface Sci 337:211–217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from China Postdoctoral Science Foundation (20080440545), National Natural Science Foundation of China (30700015), National 863 project (2006AA09Z402), Chinese Academy of Sciences Innovation Projects (O62A131BB4), and the National Science & Technology Pillar Program (200703295000-02). L.-X. Z. received funding from the Hundred Talents Program.

The authors thank Michael Goodfellow, Elizabeth Ashforth, Haian Fu, and Simon Baker for their constructive and useful comments. The authors are grateful to Zhenyang Yu for the evaluation of the stability of the surface tension of H3 biosurfactants. The authors are indebted to the National Center of Biomedical Analysis, the Academy of Military Medical Sciences for the ESI Q-TOF MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhang.

Additional information

X. Liu, B. Ren and M. Chen contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Ren, B., Chen, M. et al. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biotechnol 87, 1881–1893 (2010). https://doi.org/10.1007/s00253-010-2653-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2653-9

Keywords

Navigation