Skip to main content
Log in

Functional analysis of genes for benzoate metabolism in the albicidin biosynthetic region of Xanthomonas albilineans

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Albicidins are potent DNA-gyrase-inhibiting antibiotics and phytotoxins synthesised by Xanthomonas albilineans. Functions have been deduced for some clustered biosynthetic genes, including a PKS-NRPS megasynthase, methyltransferases and regulatory genes, and resistance genes including a transporter and a gyrase-binding protein. More puzzling is the presence in this cluster of apparent aromatic metabolism genes. Here, we describe functional analysis of several such genes and propose a model for their role. An apparent benzoate CoA ligase (xabE) proved essential for albicidin production and pathogenicity. A neighbouring operon includes genes for p-aminobenzoate (PABA) metabolism. A PABA synthase fusion (pabAB) restored prototrophy in pabA and pabB mutants of Escherichia coli, proving functionality. Inactivation of pabAB increased susceptibility to sulphanilamide but did not block albicidin production. X. albilineans contains a remote pabB gene which evidently supplies enough PABA for albicidin biosynthesis in culture. Additional capacity from pabAB may be advantageous in more demanding environments such as infected plants. Downstream from pabAB are a known resistance gene (albG) and ubiC which encodes a p-hydroxybenzoate (PHBA) synthase. PHBA protects X. albilineans from inhibition by PABA. Therefore, coordinated expression may protect X. albilineans against toxicity of both the PABA intermediate and the albicidin product, under conditions that induce high-level antibiotic biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Birch RG (2001) Xanthomonas albilineans & the antipathogenesis approach to disease control. Mol Plant Pathol 2:1–11

    Article  CAS  Google Scholar 

  • Birch RG, Patil SS (1983) The relation of blocked chloroplast differentiation to sugarcane leaf scald disease. Phytopathology 73:1368–1374

    Article  Google Scholar 

  • Birch RG, Patil SS (1985a) Antibiotic and process for the production thereof. USA Patent 4525354

  • Birch RG, Patil SS (1985b) Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. J Gen Microbiol 131:1069–1075

    CAS  Google Scholar 

  • Birch RG, Patil SS (1987) Evidence that an albicidin-like phytotoxin induces chlorosis in sugarcane leaf scald disease by blocking plastid DNA replication. Physiol Mol Plant Pathol 30:207–214

    Article  CAS  Google Scholar 

  • Blanc V, Gil P, BamasJacques N, Lorenzon S, Zagorec M, Schleuniger J, Bisch D, Blanche F, Debussche L, Crouzet J, Thibaut D (1997) Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol 23:191–202

    Article  CAS  Google Scholar 

  • Bostock JM, Huang G, Hashimi SM, Zhang LH, Birch RG (2006) A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. J Appl Microbiol 101:151–160

    Article  CAS  Google Scholar 

  • Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA, Barragan MJL, Garcia JL, Diaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    Article  CAS  Google Scholar 

  • Chang Z, Sun Y, He J, Vining LC (2001) p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147:2113–2126

    CAS  Google Scholar 

  • Cheng YQ, Coughlin JM, Lim SK, Shen B (2009) Type I polyketide synthases that require discrete acyltransferases. Methods Enzymol 459:165–186

    Article  CAS  Google Scholar 

  • Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  CAS  Google Scholar 

  • Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Accounts Chem Research 42:631–639

    Article  CAS  Google Scholar 

  • Davis BD (1951) Inhibition of Escherichia coli by p-aminobenzoic acid and its reversal by p-hydroxybenzoic acid. J Exp Med 94:243–254

    Article  CAS  Google Scholar 

  • Debruijn FJ, Lupski JR (1984) The Use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids—a review. Gene 27:131–149

    Article  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning sustem for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  CAS  Google Scholar 

  • Donadio S, Staver MJ, Mcalpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679

    Article  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  Google Scholar 

  • Gil JA, Campelo-Diez AB (2003) Candicidin biosynthesis in Streptomyces griseus. Appl Microbiol Biotechnol 60:633–642

    CAS  Google Scholar 

  • Goncharoff P, Nichols BP (1988) Evolution of aminobenzoate synthases—nucleotide-sequences of Salmonella typhimurium and Klebsiella aerogenes pabB. Mol Biol Evol 5:531–548

    CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  Google Scholar 

  • Hashimi S, Wall M, Smith AB, Maxwell A, Birch RG (2007) The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:181–187

    Article  CAS  Google Scholar 

  • He J, Hertweck C (2003) Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol 10:1225–1232

    Article  CAS  Google Scholar 

  • Huang M, Pittard J (1967) Genetic analysis of mutant strains of Escherichia coli requiring p-aminobenzoic acid for growth. J Bacteriol 93:1938–1942

    CAS  Google Scholar 

  • Huang G, Zhang L, Birch RG (2000a) Analysis of the genes flanking xabB: a methyltransferase gene is involved in albicidin biosynthesis in Xanthomonas albilineans. Gene 255:327–333

    Article  CAS  Google Scholar 

  • Huang G, Zhang L, Birch RG (2000b) Albicidin antibiotic and phytotoxin biosynthesis in Xanthomonas albilineans requires a phosphopantetheinyl transferase gene. Gene 258:193–199

    Article  CAS  Google Scholar 

  • Huang G, Zhang L, Birch RG (2000c) Characterization of the acyl carrier protein gene and the fab gene locus in Xanthomonas albilineans. FEMS Microbiol Lett 193:129–136

    Article  CAS  Google Scholar 

  • Huang G, Zhang L, Birch RG (2001) A multifunctional polyketide–peptide synthase for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147:631–642

    CAS  Google Scholar 

  • Lawrence J, Cox GB, Gibson F (1974) Biosynthesis of ubiquinone in Escherichia coli K-12—biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J Bacteriol 118:41–45

    CAS  Google Scholar 

  • Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99

    Article  CAS  Google Scholar 

  • Nakai T, Mizutani H, Miyahara I, Hirotsu K, Takeda S, Jhee KH, Yoshimura T, Esaki N (2000) Three-dimensional structure of 4-amino-4-deoxychorismate lyase from Escherichia coli. J Biochem 128:29–38

    CAS  Google Scholar 

  • Parsons JF, Jensen PY, Pachikara AS, Howard AJ, Eisenstein E, Ladner JE (2002) Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 41:2198–2208

    Article  CAS  Google Scholar 

  • Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146

    Article  CAS  Google Scholar 

  • Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Rott P (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 10:616

    Article  Google Scholar 

  • Rott PC, Costet L, Davis MJ, Frutos R, Gabriel DW (1996) At least two separate gene clusters are involved in albicidin production by Xanthomonas albilineans. J Bacteriol 178:4590–4596

    CAS  Google Scholar 

  • Royer M, Costet L, Vivien E, Bes M, Cousin A, Damais A, Pieretti I, Savin A, Megessier S, Viard M, Frutos R, Gabriel DW, Rott PC (2004) Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. Mol Plant–Microbe Interact 17:414–427

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Smith N, Roitberg AE, Rivera E, Howard A, Holden MJ, Mayhew M, Kaistha S, Gallagher DT (2006) Structural analysis of ligand binding and catalysis in chorismate lyase. Arch Biochem Biophys 445:72–80

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    CAS  Google Scholar 

  • Swedberg G, Skold O (1980) Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial-resistance to sulfonamides. J Bacteriol 142:1–7

    CAS  Google Scholar 

  • Vivien E, Pitorre D, Cociancich S, Pieretti I, Gabriel DW, Rott PC, Royer M (2007) Heterologous production of albicidin: a promising approach to overproducing and characterizing this potent inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:1549–1552

    Article  CAS  Google Scholar 

  • Wall MK, Birch RG (1997) Genes for albicidin biosynthesis and resistance span at least 69 kb in the genome of Xanthomonas albilineans. Lett Appl Microbiol 24:256–260

    Article  CAS  Google Scholar 

  • Ye QZ, Liu J, Walsh CT (1990) Para-aminobenzoate synthesis in Escherichia coli—purification and characterization of PabB as aminodeoxychorismate synthase and enzyme-X as aminodeoxychorismate lyase. Proc Natl Acad Sci USA 87:9391–9395

    Article  CAS  Google Scholar 

  • Yu TW, Bai LQ, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973

    Article  CAS  Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci USA 94:9984–9989

    Article  CAS  Google Scholar 

  • Zhang JH, Quigley NB, Gross D (1997) Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv syringae. Appl Environ Microbiol 63:2771–2778

    CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1998) Factors affecting biosynthesis by Xanthomonas albilineans of albicidin antibiotics and phytotoxins. J Appl Microbiol 85:1023–1028

    CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  CAS  Google Scholar 

  • Zhang YR, Bai LQ, Deng ZX (2009) Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes. Microbiology 155:2450–2459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Birch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimi, S.M., Birch, R.G. Functional analysis of genes for benzoate metabolism in the albicidin biosynthetic region of Xanthomonas albilineans . Appl Microbiol Biotechnol 87, 1475–1485 (2010). https://doi.org/10.1007/s00253-010-2620-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2620-5

Keywords

Navigation