Skip to main content
Log in

Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The culture supernatant of a strain of Bacillus subtilis subsp. subtilis isolated from mangrove forests of Andaman and Nicobar islands, India was found to kill larval and pupal stages of mosquitoes. A chloroform extract of the culture supernatant of the bacterium showed pupicidal effects at an LC50 dose of 1 µg/ml. The mosquitocidal metabolite(s) produced by this strain were purified by gel permeation chromatography. The purified fraction was subjected to Fourier transform infrared (FTIR) spectroscopy and Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The FTIR spectrum of active fraction/CHCl3 residue showed strong band characteristic of peptides. MALDI-TOF spectrum of the sample showed well-resolved group of peaks at m/z values 1,030.6, 1,046.7, 1,044.6, 1,060.5, 1,058.6, 1,058.7, and 1,074.6. The results indicated production of different isoforms of surfactin, ranging from C13–C15. Further, the sfp gene responsible for the production of surfactin was amplified and sequenced. In conclusion, this study showed that the mosquito pupicidal metabolite(s), produced by B. subtilis subsp. subtilis is the cyclic lipopeptide, surfactin. The mode of action of surfactin on pupae of mosquitoes is discussed. This is the first report on the mosquito pupicidal activity of surfactin produced by B. subtilis subsp. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Armengol G, Hernandez J, Velez JG, Orduz S (2006) Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99:1590–1595

    Article  Google Scholar 

  • Balaraman K, Bheema Rao US, Rajagopalan PK (1979) Bacterial pathogens of mosquito larvae—Bacillus alvei (Cheshire and Cheyene) and Bacillus brevis (Migula)—isolated in Pondicherry. Indian J Med Res 70:615–619

    CAS  Google Scholar 

  • Balaraman K, Balasubramanian M, Jambulingam P (1983) Field trial of Bacillus thuringiensis H-14 (VCRC B-17) against Culex and Anopheles larvae. Indian J Med Res 77:38–43

    CAS  Google Scholar 

  • Balaraman K, Gunasekaran K, Pillai PK, Manonmani AM (1987) Field trial with different formulations of Bacillus sphaericus for mosquito control. Indian J Med Res 85:620–625

    CAS  Google Scholar 

  • Buchoux S, Him JLK, Garnier M, Tsan P, Besson F, Brisson A, Dufours EJ (2008) Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane lysis mechanism. Biophy J 95:3840–3849

    Article  CAS  Google Scholar 

  • Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186

    Article  CAS  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  Google Scholar 

  • Darriet F, Hougard JM (2002) An isolate of Bacillus circulans toxic to mosquito larvae. J Am Mosq Control Assoc 18:65–67

    Google Scholar 

  • Das K, Mukherjee AK (2006) Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop 97:168–173

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M, Jacques P, Thonart P, Adriaensen Y, Dufrene YF (1999) Nanometer scale organization of mixed surfactin/phosphatidylcholine monolayers. Biophys J 77:2304–2310

    Article  CAS  Google Scholar 

  • Fonseca RR, Silva AJ, De Franca FP, Cardoso VL, Servulo EF (2007) Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol 137–140:471–486

    Article  Google Scholar 

  • From C, Hormazabal V, Hardy SP, Granum PE (2007) Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: implications for assessment of toxicity and food poisoning potential. Int J Food Microbiol 117:43–49

    Article  CAS  Google Scholar 

  • Gao X, Yao S, Huong P, Joachim V, Wang J (2003) Purification and identification of surfactin isoforms produced by Bacillus subtilis B2 strain. Wei Sheng Wu Xue Bao 43:647–652

    CAS  Google Scholar 

  • Geetha I, Manonmani AM (2008) Mosquito pupicidal toxin production by Bacillus subtilis subsp. subtilis. Biol Control 44:242–247

    Article  CAS  Google Scholar 

  • Geetha I, Prabakaran G, Paily KP, Manonmani AM, Balaraman K (2007) Characterisation of three mosquitocidal Bacillus strains isolated from mangrove forest. Biol Control 42:34–40

    Article  Google Scholar 

  • Gratz NG, Jany WC (1994) What role for insecticides in vector control programs? Am J Trop Med Hyg 50:11–20

    CAS  Google Scholar 

  • Gupta DK, Vyas M (1989) Efficacy of Bacillus subtilis against mosquito larvae (Anopheles culicifacies). Zeitschrift fuer Angewandte Zoologie 76:85–91

    Google Scholar 

  • Haddad NI, Liu X, Yang S, Mu B (2008) Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization. Protein Peptide Lett 15:265–269

    Article  CAS  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Article  CAS  Google Scholar 

  • Kakinuma A, Sugino H, Isono M, Tamura G, Arima K (1969) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976

    CAS  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474

    CAS  Google Scholar 

  • Khyami-Horani H, Katbeh-Bader A, Mohsen ZH (1999) Isolation of endospore-forming bacilli toxic to Culiseta longiareolata (Diptera: Culicidae) in Jordan. Lett Appl Microbiol 128:57–60

    Article  Google Scholar 

  • Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8

    Article  CAS  Google Scholar 

  • Leclere V, Marti R, Bechet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483

    Article  CAS  Google Scholar 

  • Medeiros FP, Santos MA, Regis L, Rios EM, Rolim Neto PJ (2005) Development of a Bacillus sphaericus tablet formulation and its evaluation as a larvicide in the biological control of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 100:431–434

    Article  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  Google Scholar 

  • Mulla MS, Chaudhury MF (1968) Ovicidal activity of aliphatic amines and petroleum oil against two species of mosquitoes. J Econ Entomol 61:510–515

    CAS  Google Scholar 

  • Munimbazi C, Bullerman LB (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J Appl Microbiol 84:959–968

    Article  CAS  Google Scholar 

  • Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668

    CAS  Google Scholar 

  • Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172

    Article  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Labbe H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G (1994) [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96

    Article  CAS  Google Scholar 

  • Piper WD, Maxwell KE (1971) Mode of action of surfactants on mosquito pupae. J Econ Entomol 643:601–606

    Google Scholar 

  • Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–861

    CAS  Google Scholar 

  • Queiroga CL, Nascimento LR, Serra GE (2003) Evaluation of paraffins biodegradation and biosurfactant production by Bacillus subtilis in the presence of crude oil. Braz J Microbiol 34:321–324

    Article  CAS  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Yano H, Komagata F (1996) Differentiation of species in the Bacillus brevis group and the Bacillus aneurinolyticus group based on the electrophoretic whole-cell protein pattern. Antonie Van Leeuwenhoek 70:31–39

    Article  CAS  Google Scholar 

  • Singh KRP, Micks DW (1957) Synthesis of amino acids in Aedes aegypti. Mosq News 17:248–251

    CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization—time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Özel M, Vater J (1997a) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    CAS  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997b) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  Google Scholar 

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, Geneva, Switzerland. WHO/CDS/WHOPES/GCDPP/2005.13

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, Mc Inerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Meth 56:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. P. Jambulingam, Director, Vector Control Research Centre, Dr. K. Balaraman (Retd)., Dr. S. L. Hoti, Scientist “F,” for their suggestions, encouragement, and the facilities provided throughout the study. The technical assistance rendered by Mr. S. Venugopalan is gratefully acknowledged. We thank Dr. Nisha Mathew, Scientist “C,” for FTIR spectroscopy. We would also like to thank Dr. Joachim Vater, Institut für Chemie, Arbeitsgruppe Biochemie und Molekulare Biologie, Technische Universität Berlin for MALDI-TOF analysis of the sample. This study was supported by a research grant from the Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Geetha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geetha, I., Manonmani, A.M. & Paily, K.P. Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86, 1737–1744 (2010). https://doi.org/10.1007/s00253-010-2449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2449-y

Keywords

Navigation