Skip to main content
Log in

Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A cDNA encoding a bifunctional acetylxylan esterase/xylanase, XynS20E, was cloned from the ruminal fungus Neocallimastix patriciarum. A putative conserved domain of carbohydrate esterase family 1 was observed at the N-terminus and a putative conserved domain of glycosyl hydrolase family 11 was detected at the C-terminus of XynS20E. To examine the enzyme activities, XynS20E was expressed in Escherichia coli as a recombinant His6 fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling combined with central composite design and regression analysis was then applied to determine the optimal temperature and pH conditions of the recombinant XynS20E. The optimal conditions for the highest xylanase activity of the recombinant XynS20E were observed at a temperature of 49°C and a pH of 5.8, while those for the highest carbohydrate esterase activity were observed at a temperature of 58°C and a pH of 8.2. Under the optimal conditions for the enzyme activity, the xylanase and acetylxylan esterase specific activities of the recombinant XynS20E toward birchwood xylan were 128.7 and 873.1 U mg−1, respectively. To our knowledge, this is the first report of a bifunctional xylanolytic enzyme with acetylxylan esterase and xylanase activities from rumen fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhnazarova S, Kafarov V (1982) Experiment optimization in chemistry and chemical engineering. Mir, Moscow

    Google Scholar 

  • Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ (2000) Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:1391–1397

    CAS  Google Scholar 

  • Blum DL, Kataeva IA, Li XL, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351

    Article  CAS  Google Scholar 

  • Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65:3990–3995

    CAS  Google Scholar 

  • Cepeljnik T, Rincon MT, Flint HJ, Logar R (2006) Xyn11A, a multidomain multicatalytic enzyme from Pseudobutyrivibrio xylanivorans Mz5T. Folia Microbiol 51:263–267

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Cybinski DH, Layton I, Lowry JB, Dalrymaple BP (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52:221–225

    Article  CAS  Google Scholar 

  • Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB (1997) Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143:2605–2614

    Article  CAS  Google Scholar 

  • Ding SJ, Cao J, Zhou R, Zheng F (2007) Molecular cloning, and characterization ofamodularacetyl xylan esterase fromthe edible strawmushroom Volvariella volvacea. FEMS Microbiol Lett 274:304–310

    Article  CAS  Google Scholar 

  • Denman S, Xue GP, Patel B (1996) Characterization of a Neocallimastix patriciarum Cellulase cDNA (celA) Homologous to Trichoderma reesei Cellobiohydrolase II. Appl Environ Microbiol 62:1889–1896

    CAS  Google Scholar 

  • Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D (1996) Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 319:881–886

    CAS  Google Scholar 

  • Fanutti C, Ponyi T, Black GW, Hazlewood GP, Gilbert HJ (1995) The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 270:29314–29322

    Article  CAS  Google Scholar 

  • Ferreira LMA, Wood TM, Williamson G, Faulds C, Hazlewood GP, Black GW, Gilbert HJ (1993) A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a noncatalytic cellulose-binding domain. Biochem J 294:349–355

    CAS  Google Scholar 

  • Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J 343:215–224

    Article  CAS  Google Scholar 

  • Halgasova N, Kutejova E, Timko J (1994) Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J 298:751–755

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  • Heck JX, Flores SH, Hertz PF, Ayub MAZ (2006) Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation. Biores Technol 97:1902–1906

    Article  CAS  Google Scholar 

  • Huang YH, Huang CT, Hseu RS (2005) Effects of dockerin domains on Neocallimastix frontalis xylanases. FEMS Microbiol Lett 243:455–460

    Article  CAS  Google Scholar 

  • Johnson KG, Fontana JD, MacKenzie CR (1988) Measurement of acetylxylan esterase in Streptomyces. Methods Enzymol 160:551–560

    Article  CAS  Google Scholar 

  • Khandeparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35:635–644

    Article  CAS  Google Scholar 

  • Konig J, Grasser R, Pikor H, Vogel K (2002) Determination of xylanase, β-glucanase, and cellulase activity. Anal Bioanal Chem 374:80–87

    Article  CAS  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2002) Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 57:685

    Google Scholar 

  • Liu JR, Duan CH, Zhao X, Tzen JTC, Cheng KJ, Pai CK (2008) Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl Microbiol Biotechnol 79:225–233

    Article  CAS  Google Scholar 

  • Lu P, Feng MG (2008) Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 79:579–587

    Article  CAS  Google Scholar 

  • Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP (2007) Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J Mol Biol 373:612–622

    Article  CAS  Google Scholar 

  • Raghothama S, Eberhardt RY, Simpson P, Wigelsworth D, White P, Hazlewood GP (2001) Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nature Struct Biol 8:775–778

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Segurola J, Allen NS, Edge M, McMahon A (1999) Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Prog Org Coat 37:23–37

    Article  CAS  Google Scholar 

  • Selinger LB, Forsberg CW, Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2:263–284

    Article  CAS  Google Scholar 

  • Shao W, Wiegel J (1995) Purification and characterization of two acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 1764:263–274

    Google Scholar 

  • Steenbakkers PJM, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, Op Den Camp HJM (2001) Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol 183:5325–5333

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  Google Scholar 

  • Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M (1994) Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci 3:467–475

    Article  CAS  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted using funds partially provided by grant NSC 98-2313-B-002-033-MY3 from the National Science Council and grant 97AS-2.1.2-AD-U1(3) from the Council of Agriculture, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Ruei Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

HPLC analysis of the amount of acetic acid released from the substrates by XynS20E. (A) Calibration curve with acetic acid standards. (B) Acetic acid standard (12 mM); (C) birchwood xylan (0.5%, w/v) in 100 mM sodium phosphate buffer (pH 8.2) incubated at 52°C for 20 min; (D) birchwood xylan (0.5%, w/v) in 100 mM sodium phosphate buffer (pH 8.2) incubated with 0.1 μg of the purified recombinant XynS20E at 52°C for 20 min (final reaction volume of 300 μl). (DOC 290 kb)

Figure S2

(A) Michaelis–Menten Plot relating the reaction rate V 0 (initial velocity) to the substrate concentration [S]. (B) Lineweaver–Burk plot, plotting the inverse of substrate concentration against the inverse of the initial velocity. (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, CK., Wu, ZY., Chen, MJ. et al. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum . Appl Microbiol Biotechnol 85, 1451–1462 (2010). https://doi.org/10.1007/s00253-009-2175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2175-5

Keywords

Navigation