Skip to main content
Log in

Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellobiose dehydrogenase from the ascomycete fungus Myriococcum thermophilum (MtCDH) was tested for the ability to generate bleaching species at a pH suitable for liquid detergents. The catalytic properties of MtCDH were investigated for a large variety of carbohydrate substrates using oxygen as an electron receptor. MtCDH produces H2O2 with all substrates tested (except fructose) but only in the presence of a chelant. Insoluble substrates like cellulose and cotton could as well be oxidized by MtCDH. To enhance the amount of cello-oligosaccharides in solution, different cellulases on cotton were used and in combination with MtCDH an increased H2O2 concentration could be measured. Additionally, the degradation of pure anthocyanins in solution (as model substrates for bleaching) was investigated in the absence and presence of a horseradish peroxidase. MtCDH was able to produce a sufficient amount of H2O2 to decolorize the anthocyanins within 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ander P, Sena-Martins G, Duarte JC (1993) Influence of cellobiose oxidase on peroxidases from Phanerochaete chrysosporium. Biochem J 293:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayers AR, Ayers SB, Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181

    Article  CAS  PubMed  Google Scholar 

  • Baminger U, Nidetzky B, Kulbe KD, Haltrich D (2002) A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. J Microbiol Methods 35:253–259

    Article  Google Scholar 

  • Baminger U, Subramaniam SS, Renganathan V, Haltrich D (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl Environ Microbiol 67:1766–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao WJ, Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80

    Article  CAS  PubMed  Google Scholar 

  • Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713

    Article  CAS  PubMed  Google Scholar 

  • Cameron MD, Aust SD (2001) Cellobiose dehydrogenase—an extracellular fungal flavocytochrome. Enzyme Microb Technol 28:129–138

    Article  CAS  PubMed  Google Scholar 

  • Canevascini G, Borer P, Dreyer JL (1991) Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem 198:43–52

    Article  CAS  PubMed  Google Scholar 

  • Denicola A, Souza J, Gatti RM, Augusto O, Radi R (1995) Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radical Biol Med 19:11–19

    Article  CAS  Google Scholar 

  • Grommeck R, Markakis P (2006) The effect of peroxidase on anthocyanin pigments. J Food Sci 29:53–57

    Article  Google Scholar 

  • Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8:79–88

    Article  CAS  PubMed  Google Scholar 

  • Harreither W, Coman V, Ludwig R, Haltrich D, Gorton L (2007) Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycete Myriococcum thermophilum. Electroanal 19:172–180

    Article  CAS  Google Scholar 

  • Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, Guebitz G (2005) Biotransformation of phenolics with laccase containing bacterial spores. Environ Chem Lett 3:74–77

    Article  CAS  Google Scholar 

  • Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into 2 domains. Eur J Biochem 196:101–106

    Article  CAS  PubMed  Google Scholar 

  • Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta, Protein Struct Mol Enzymol 1383:48–54

    Article  CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (1993) Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta, Bioenerg 1144:184–190

    Article  CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown rot fungus Coniophora puteana Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiol 143:259–266

    Article  CAS  Google Scholar 

  • Kaack K, Austed T (1998) Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods Hum Nutr 52:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kader F, Rovel B, Girardin M, Metche M (1997) Mechanism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). Partial purification and characterisation of blueberry polyphenol oxidase. J Sci Food Agric 73:513–516

    Article  CAS  Google Scholar 

  • Kremer SM, Wood PM (1992a) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138

    Article  CAS  PubMed  Google Scholar 

  • Kremer SM, Wood PM (1992b) Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem 208:807–814

    Article  CAS  PubMed  Google Scholar 

  • Kruger NJ (1996) The Bradford method for protein quantitation. In: Walker JM (ed) Methods in Molecular Biology. Human, Totowa, pp 15–20

    Google Scholar 

  • López C, Cavaco-Paulo A (2008) In-situ enzymatic generation of hydrogen peroxide for bleaching purposes. Eng Life Sci 8:315–323

    Article  CAS  Google Scholar 

  • Ludwig R, Haltrich D (2003) Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsii. Appl Microbiol Biotechnol 61:32–39

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Wilson MT, Ball A, Nicholls P (2002) Oxygen reduction by cellobiose oxidoreductase: the role of the haem group. FEBS Lett 518:29–32

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT (2003) The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta, Bioenerg 1604:47–54

    Article  CAS  Google Scholar 

  • Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus Sporotrichum pulverulentum. Biochem J 228:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murkovic M, Adam U, Pfannhauser W (2000) Analysis of anthocyane glycosides in human serum. Fresenius J Anal Chem 366:379–381

    Article  CAS  PubMed  Google Scholar 

  • Nutt A, Salumets A, Henriksson G, Sild V, Johansson G (1997) Conversion of O2 species by cellobiose dehydrogenase (cellobiose oxidase) and glucose oxidase a comparison. Biotechnol Lett 19:379–384

    Article  CAS  Google Scholar 

  • Opwis K, Knittel D, Schollmeyer E, Hoferichter P, Cordes A (2008) Simultaneous application of glucose oxidases and peroxidases in bleaching processes. Eng Life Sci 8:175–178

    Article  CAS  Google Scholar 

  • Pifferi PG, Cultrera R (1974) Enzymatic degradation of anthocyanins—role of sweet cherry polyphenol oxidase. J Food Sci 39:786–791

    Article  CAS  Google Scholar 

  • Pricelius S, Murkovic M, Souter P, Guebitz GM (2009) Substrate specificities of glycosidases from Aspergillus sp. pectinase preparations on elderberry anthocyanins. J Agric Food Chem 57:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Queen D, Coutts P, Fierheller P, Sibbald RG (2007) The use of a novel oxygenating hydrogel dressing in the treatment of different chronic wounds. Adv Skin Wound Care 20:200–207

    Article  PubMed  Google Scholar 

  • Renganathan V, Usha SN, Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium—interaction with microcrystalline cellulose. Appl Microbiol Biotechnol 32:609–613

    Article  CAS  Google Scholar 

  • Ribitsch D, Karl W, Wehrschuetz-Sigl E, Tutz S, Remler P, Weber H, Gruber K, Stehr R, Bessler C, Hoven N, Sauter K, Maurer K, Schwab H (2009) Heterologous expression and characterization of choline oxidase from the soil bacterium Arthrobacter nicotianae. Appl Microbiol Biotechnol 81:875–886

    Article  CAS  PubMed  Google Scholar 

  • Sachslehner A, Haltrich D, Nidetzky B, Kulbe KD (1997) Production of hemicellulose degrading and cellulose degrading enzymes by various strains of Sclerotium rolfsii. Appl Biochem Biotech 63–65:189–201

    Article  Google Scholar 

  • Schou C, Christensen MH, Schuelein M (1998) Characterization of a cellobiose dehydrogenase from Humicola insolens. Biochem J 330:565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoica L, Ruzgas T, Ludwig R, Haltrich D, Gorton L (2006) Direct electron transfer a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Langmuir 22:10801–10806

    Article  CAS  PubMed  Google Scholar 

  • Tzanov T, Costa SA, Guebitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93:87–94

    Article  CAS  PubMed  Google Scholar 

  • vanEe Misset O, Baas EJ (1997) Enzymes in Detergency. Marcel Dekker., New York

    Book  Google Scholar 

  • Wilson MT, Hogg N, Jones GD (1990) Reactions of reduced cellobiose oxidase with oxygen—is cellobiose oxidase primarily an oxidase? Biochem J 270:265–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  • Zamocky M, Dunand C (2006) Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Lett 580:6655–6664

    Article  CAS  PubMed  Google Scholar 

  • Zamocky M, Schuemann C, Sygmund C, O’Callaghan J, Dobson ADW, Ludwig R, Haltrich D, Peterbauer CK (2008) Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum. Protein Expr Purif 59:258–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang LS, Wong GTF (1994) Spectrophotometric determination of H2O2 in marine waters with leuco crystal violet. Talanta 41:2137–2145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Guebitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pricelius, S., Ludwig, R., Lant, N. et al. Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2 . Appl Microbiol Biotechnol 85, 75–83 (2009). https://doi.org/10.1007/s00253-009-2062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2062-0

Keywords

Navigation