Skip to main content

Advertisement

Log in

Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70–100 g Chlorella dry mass l−1) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Hamid M, Skulberg OM (2006) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Reservoirs: Res Manage 1:205–211

    Google Scholar 

  • Ammerman CB, Miller SM (1975) Selenium in ruminant: a review. J Dairy Sci 58:1561–1577

    CAS  PubMed  Google Scholar 

  • Arpášová H, Petrovič V, Mellen M, Kačániová M, Čobanová K, Leng L (2009) The effects of supplementing sodium selenite and selenized yeast to the diet for laying hens on the quality and mineral content of eggs. J Anim Feed Sci 18:90–100

    Google Scholar 

  • Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    CAS  Google Scholar 

  • Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    CAS  PubMed  Google Scholar 

  • Bird SM, Uden PC, Tyson JF, Block E, Denoyer E (1997) Speciation of selenoamino acids and organoselenium compounds in selenium-enriched yeast using high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:785–788

    CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermentors. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA (1984) Selenium containing amino acids and proteins in marine algae. Phytochemistry 23:2445–2452

    CAS  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    CAS  PubMed  Google Scholar 

  • Capelo JL, Fernandez C, Pedras B, Santos P, Gonzales P, Vaz C (2006) Trends in selenium determination/speciation by hyphenated techniques based on AAS or AFS. Talanta 68:1442–1447

    CAS  PubMed  Google Scholar 

  • Cases J, Vacchina V, Napolitano A, Caporiccio B, Besancon P, Lobin R, Rouanet JM (2001) Selenium from selenium-rich Spirulina is less bio-available than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 131:2343–2350

    CAS  PubMed  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotech 14:421–426

    CAS  Google Scholar 

  • Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    CAS  PubMed  Google Scholar 

  • Combs GF Jr (2001) Selenium in global food systems. Brit J Nutr 85:517–547

    CAS  PubMed  Google Scholar 

  • Darmadi-Blackberry I, Wahlquist ML (2001) Selenium in human health. Curr Ther June:58–62

    Google Scholar 

  • Dazhi W, Zhaodi C, Shaojing L, Yahui G (2003) Toxicity and accumulation of selenite in four microalgae. Chin J Oceanol Limnol 21:280–285

    Google Scholar 

  • De Alcantara S, Lopes CC, Wagener K (1998) Controlled introduction of selenium into Chlorella cells. Indian J Exp Biol 36:1286–1288

    PubMed  Google Scholar 

  • Dlouhá G, Ševčíková S, Dokoupilová A, Zita L, Heindl J, Skřivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Anim Sci 53:265–269

    Google Scholar 

  • Doucha J, Lívanský K (2001) Method of controlled cultivation of algae in heterotrophic mode of nutrition. Czech Patent 288638, 2001

  • Doucha J, Lívanský K (2008) Production strain of the alga Chlorella vulgaris BEIJ. strain Doucha et Lívanský 1996/H 14. Czech Patent 299352, 2008

  • Doucha J, Lívanský K, Kotrbáček V, Machát J, Skřivan M (2006) Production of Chlorella (Chlorophyta) biomass enriched by selenium and its use as a feed supplement. Proc of the 6th Asia-Pacific Conference on Algal Biotechnology, UP Los Baños, Philippines, October 12–15, 2006, Book of Abstracts, 143-144

  • Doušková I, Machát J, Umysová D, Vítová M, Doucha J, Zachleder V (2007) Scenedesmus quadricauda - a promising microorganism for selenium-enriched algal biomass production. SEFS-5 Symposium for European Freshwate Sciences, Palermo, Italy, July 7, 2007, Book of Abstracts, p. 197

  • Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323

    CAS  PubMed  Google Scholar 

  • EC Scientific Committee on Food (2003) Opinion of the Scientific Committee on Food on the Revision of Reference Values for Nutrition Labeling. Commission of the European Communities, Brussels

  • Fan TWM, Lane AN, Martens D, Higashi RM (1998) Synthesis and structure characterization of selenium metabolites. Analyst 123:875–884

    CAS  Google Scholar 

  • Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63(6):196–202

    PubMed  Google Scholar 

  • Griffiths JC, Matulka RA, Power R (2006) Genotoxicity studies on Sel-Plex®, a standardized, registered high-selenium yeast. Int J Toxicol 25:477–485

    CAS  PubMed  Google Scholar 

  • Hymer CB, Caruso JA (2006) Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr 1114:1–20

    Google Scholar 

  • Kodentsova VM, Gmoshinskii IV, Vrzhesinskaia OA, Beketova NA, Kharitonchik LA, Nizov AA, Mazo VK (2001) Use of the microalgae Spirulina platensis and its selenium-containing form in nutrition of patients with nonspecific ulcerative colitis. (In Russian). Vopr Pitan 70(5):17–21

    CAS  PubMed  Google Scholar 

  • Kuta J, Machát J, Hořejší E, Doušková I, Vítová M (2008) Speciation of selenoamino acids in Se|-enriched green algae by HPLC-ICP-MS. (In Czech). XIX. Slovak – Czech Spectroscopic Conference, Comenius University, Bratislava, Slovakia, October 12, 2008, Book of Abstracts, p.104

  • Kvíčala J, Zamrazil V, Tlučhoř B (1996) Deficiency of selenium in inhabitants of highly polluted area of North-west Bohemia. In: Néve J, Chappuis P, Lamand M (eds) Therapeutic uses of trace elements. Plenum, New York, pp 345–350

    Google Scholar 

  • Larsen EH, Hansen M, Fan T, Vahl M (2001) Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal At Spectrom 16:1403–1408

    CAS  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Li ZY, Guo SY, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89:171–176

    CAS  PubMed  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    CAS  PubMed  Google Scholar 

  • Lobinski R, Edmonds JS, Suzuki KT, Uden PC (2000) Species-selective determination of selenium compounds in biological materials (Technical report). Pure Appl Chem 72:447–461

    CAS  Google Scholar 

  • Machát J, Čmelík J, Doucha J, Otruba V (2005a) Se-enriched alga Chlorella—fractionation of Se forms-(In Czech). In: Mikroelementy 2005. 2Theta, Český Těšín, 71-75

  • Machát J, Burianová I, Čmelík J, Niedobová E, Doucha J, Kanický V (2005b) Distribution of selenium and iodine in Chlorella cells enriched during cultivation. Proc 6th Eur Workshop Eur Soc Microalgal Biotech. Nuthetal: IGV GmbH, Germany, May 23, 2005, Book of Abstracts, 3S/P4-1

  • Mayland HF (1994) Selenium in plant and animal nutrition. In: Frankenberger WT, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 29–45

    Google Scholar 

  • McSheehy S, Pohl P, Szpunar J, Potin-Gautier M, Lobinski R (2001) Analysis for selenium speciation in selenized yeast extracts by two-dimensional liquid chromatography with ICP-MS and electrospray MS-MS detection. J Anal At Spectrom 16:68–73

    CAS  Google Scholar 

  • Mosulishvili LM, Kirkesali YI, Belokobylsky AI, Khizanishvili AI, Frontasyeva MV, Gundorina SF, Oprea CD (2002) Epithermal neutron activation analysis of blue-green algae Spirulina platensis as a matrix for selenium-containing pharmaceuticals. J Radioanal Nucl Chem 252:15–20

    CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    CAS  PubMed  Google Scholar 

  • Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenite. Plant Cell & Environ 26:897–905

    CAS  Google Scholar 

  • Neve J (2000) New indices for assessment of trace element status and requirement, with a special focus on selenium. In: Roussel AM, Favier A, Anderson RA (eds) Trace elements in man and animals. Proc of tenth international symposium on trace elements in man and animals. Plenum, New York, pp 317–322

    Google Scholar 

  • Patrick L (2004) Selenium biochemistry and cancer: a review of the literature. Alter Med-Rev 9:239–258

    Google Scholar 

  • Pedrero Z, Madrid Y (2008) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152

    PubMed  Google Scholar 

  • Pelah D, Cohen E (2005) Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regul 45:225–232

    CAS  Google Scholar 

  • Polatajko A, Jakubowski N, Szpunar J (2006) State of the art report of selenium speciation in biological samples. J Anal At Spectrom 21:639–654

    CAS  Google Scholar 

  • Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN (2002) The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russian J Plant Physiol 49:235–241

    CAS  Google Scholar 

  • Quin SY, Gao JZ, Juany KH (2007) Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116:91–102

    Google Scholar 

  • Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Brit J Nutr 92:557–573

    CAS  PubMed  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    CAS  PubMed  Google Scholar 

  • Reilly C (1996) Selenium in food and health. Blackie Academic & Professional, London

    Google Scholar 

  • Rodinová H, Kroupová V, Trávníček J, Staňková M, Písek L (2008) Dynamics of IgG in the blood serum of sheep with different selenium intake. Vet Med 53:260–265

    Google Scholar 

  • Sager M (2006) Selenium in agriculture, food, and nutrition. Pure Appl Chem 78:111–133

    CAS  Google Scholar 

  • Schrauzer GN (1998) Selenomethionine: a review of its natural significance, metabolism and toxicity. J Nutr 130:1653–1656

    Google Scholar 

  • Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873

    CAS  PubMed  Google Scholar 

  • Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112

    CAS  PubMed  Google Scholar 

  • Schrauzer GN (2006) Selenium yeast: composition, quality, analysis, and safety. Pure Appl Chem 78:105–109

    CAS  Google Scholar 

  • Ševčíková S, Skřivan M, Dlouhá G, Koucký M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech J Anim Sci 51:449–457

    Google Scholar 

  • Skřivan M, Šimáně J, Dlouhá G, Doucha J (2006) Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production. Czech J Anim Sci 51:163–167

    Google Scholar 

  • Skřivan M, Marounek M, Dlouhá G, Ševčíková S (2008) Dietary selenium increases vitamin E contents of egg yolk and chicken meat. Brit Poultry Sci 49:482–486

    Google Scholar 

  • Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol 14:43–47

    CAS  PubMed  Google Scholar 

  • Sunde RA (1997) In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Marcel Dekker, New York, pp 493–556

    Google Scholar 

  • Surai PF (2002a) Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World Poultry Sci J 58:333–347

    Google Scholar 

  • Surai PF (2002b) Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World′s Poult Sci J 58:431–450

    Google Scholar 

  • Surai PF (2006) Selenium in nutrition and health. Nottingham University Press, Nottingham, p 974

    Google Scholar 

  • Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402

    CAS  PubMed  Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110

    CAS  PubMed  Google Scholar 

  • Trávníček J, Písek L, Herzig I, Doucha J, Kvíčala J, Kroupová V, Rodinová H (2007) Selenium content in the blood serum and urine of ewes receiving selenium-enriched unicellular alga Chlorella. Vet Med 52:42–48

    Google Scholar 

  • Trávníček J, Racek J, Trefil L, Rodinová H, Kroupová V, Illek J, Doucha J, Písek L (2008) Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Czech J Anim Sci 53:292–298

    Google Scholar 

  • Uden PC (2005) Speciation of selenium. In: Cornelis R, Caruso J, Crews H, Heumann KG (eds) Handbook of elemental speciation II: species in the environment, food, medicine and occupational health. Wiley, New York, pp 246–365

    Google Scholar 

  • Uden PC, Boakye HT, Kahakachchi C, Tyson JF (2004) Selective detection and identification of Se containing compounds - review and recent developments. J Chromatogr 1050(1):85–93

    CAS  Google Scholar 

  • Umysová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Doucha J, Machát J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9, in press

    PubMed  PubMed Central  Google Scholar 

  • Upton JR, Edens FW, Ferket PR (2008) Selenium yeast effect on broiler performance. Int J Poultry Sci 7:798–805

    Google Scholar 

  • Van Vleet JF (1980) Current knowledge of selenium-vitamin E deficiency in domestic animals. J Amer Veter Med Assoc 176:321–325

    Google Scholar 

  • Wada O, Kurihara N, Yamazaki N (1993) Essentiality and toxicity of trace elements. Jap J Nutr Assess 10:199–210

    Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    CAS  PubMed  Google Scholar 

  • Wu Z, Shi X (2006) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18

    CAS  Google Scholar 

  • Wu ZY, Shi CL, Shi XM (2007) Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238

    CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the EUREKA projects OE 221 and OE 09025 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Doucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucha, J., Lívanský, K., Kotrbáček, V. et al. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Appl Microbiol Biotechnol 83, 1001–1008 (2009). https://doi.org/10.1007/s00253-009-2058-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2058-9

Keywords

Navigation