Skip to main content
Log in

Transcriptional profiles of response to terbinafine in Trichophyton rubrum

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichophyton rubrum is a good model for the study of human pathogenic filamentous fungi. The antifungal agent terbinafine (TRB) shows specific activity against T. rubrum. To identify the transcriptional profiles of response to TRB in T. rubrum, a cDNA microarray was constructed from the expressed sequence tags of different phase cDNA libraries and transcriptional profiles of the response to TRB were determined. Exposure to TRB decreased the transcription of some genes involved in the ergosterol biosynthesis pathway, including ERG2, ERG4, ERG24, and ERG25, and induced the expression of some genes involved in lipid metabolism such as ERG10, ERG13, and INO1. TRB affected transcription of multidrug-resistance genes and some genes encoding ribosomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aly R, Forney R, Bayles C (2001) Treatments for common superficial fungal infections. Dermatol Nurs 13:91–101

    CAS  PubMed  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casey WM, Keesler GA, Parks LW (1992) Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 174:7283–7288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BK, Friedlander SF (2001) Tinea capitis update: a continuing conflict with an old adversary. Curr Opin Pediatr 13:331–335

    CAS  PubMed  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Google Scholar 

  • Coloe SV, Baird RW (1999) Dermatophyte infections in Melbourne: trends from 1961/64 to 1995/96. Pathology 31:395–397

    CAS  PubMed  Google Scholar 

  • Costa M, Passos XS, Souza LK, Miranda AT, Lemos JA, Oliveira JG, Silva MR (2002) Epidemiology and etiology of dermatophytosis in Goiania, GO. Brazil Rev Soc Bras Med Trop 35:19–22

    PubMed  Google Scholar 

  • Crawford F, Young P, Godfrey C, Bell-Syer SE, Hart R, Brunt E, Russell I (2002) Oral treatments for toenail onychomycosis: a systematic review. Arc Dermatol 138:811–816

    CAS  Google Scholar 

  • De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670

    PubMed  PubMed Central  Google Scholar 

  • De Hoog GS, Guarro J, Gene J, Figueras MJ (2000) Atlas of Clinical Fungi, 2nd Ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands and University Rovirai Virgili, Reus, Spain

  • Degreef HJ, DeDoncker PR (1994) Current therapy of dermatophytosis. J Am Acad Dermatol 31:S25–S30

    CAS  PubMed  Google Scholar 

  • Diehl F, Grahlmann S, Beier M, Hoheisel JD (2001) Manufacturing DNA-microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res 29:e38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elewski BE, Leyden J, Rinaldi MG, Atillasoy E (2002) Office practice-based confirmation of onychomycosis: a U.S. nationwide prospective survey. Arch Intern Med 162:2133–2138

    PubMed  Google Scholar 

  • Fachin AL, Ferreira-Nozawa MS, Maccheroni W, Martinez-Rossi NM (2006) Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 55:1093–1099

    CAS  PubMed  Google Scholar 

  • Favre B, Ryder NS (1996) Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents. Antimicrob Agents Chemother 40:443–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Favre B, Ryder NS (1997) Cloning and expression of squalene epoxidase from pathogenic yeast Candida albicans. Gene 189:119–126

    CAS  PubMed  Google Scholar 

  • Gupta AK, Shear NH (1997) Terbinafine: an update. J Am Acad Dermatol 37:979–988

    CAS  PubMed  Google Scholar 

  • Jackson CJ, Barton RC, Evans EGV (1999) Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol 37:931–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings MB, Weinberg JM, Koestenblatt EK, Lesczczynski C (2002) Study of clinically suspected onychomycosis in a podiatric population. J Am Podiat Med Assoc 92:327–330

    Google Scholar 

  • Jessup CJ, Ryder NS, Ghannoum MA (2000) An evaluation of the in vitro activity of terbinafine. Med Mycol 38:155–159

    CAS  PubMed  Google Scholar 

  • Klobucnikova V, Kohut P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I (2003) Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun 309:666–671

    CAS  PubMed  Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28:118–121

    CAS  PubMed  Google Scholar 

  • Larone DH (2002) Medically important fungi: a guide to identification, 4th ed. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Leber R, Fuchsbichler S, Klobucnikova V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F (2003) Molecular mechanism of terbinafine resistance in S. cerevisiae. Antimicrob Agents Chemother 47:3890–3900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leber R, Landl K, Zinser E, Ahorn H, Spök A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9:375–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leber R, Zenz R, Schröttner K, Fuchsbichler S, Pühringer B, Turnowsky F (2001) A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae. Eur J Biochem 268:914–924

    CAS  PubMed  Google Scholar 

  • Leber R, Zinser E, Hrastnik C, Paltauf F, Daum G (1995) Export of steryl esters from lipid particles and release of free sterols in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1234:119–126

    PubMed  Google Scholar 

  • Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S (2002) Molecular basis of resistance to azole antifungals. Trends Mol Med 8:76–81

    CAS  PubMed  Google Scholar 

  • Monod M, Jaccoud S, Zaugg C, Lechenn B, Baudraz F, Panizzon R (2002) Survey of dermatophyte infections in the Lausanne area (Switzerland). Dermatology 205:201–203

    PubMed  Google Scholar 

  • Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MZ (2003) Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 47:82–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paltauf F, Daum G, Zuder G, Högenauer G, Schulz G, Seidl G (1982) Squalene and ergosterol biosynthesis in fungi treated with naftifine, a new antimycotic agent. Biochim Biophys Acta 712:268–273

    CAS  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    CAS  PubMed  Google Scholar 

  • Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R (2005) Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. J Antimicrob Chemother 55:905–913

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Zhang X, Yang J, Wang J, Yang E, Bin W, Wei C, Sun M, Jin Q (2006) The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella. BMC genomics 7:218

    PubMed  PubMed Central  Google Scholar 

  • Petranyi G, Meingassner JG, Mieth H (1987) Activity of terbinafine in experimental fungal infections of laboratory animals. Antimicrob Agents Chemother 31:1558–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto WJ, Lozano R, Nes WR (1985) Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae. Biochim Biophys Acta 836:89–95

    CAS  PubMed  Google Scholar 

  • Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl. 39):2–7

    PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Servouse M, Karst F (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J 240:541–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SJ, Crowley JH, Park SLW (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16:5427–5432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HF, Bard M, Izumikawa K, Krol AA, Sturm AM, Culbertson NT, Pierson CA, Bennett JE (2004) Candida glabrata mutant with increased sensitivity to azoles and to low oxygen tension. Antimicrob Agents Chemother 48:2483–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanden Bossche H, Willemsens G, Marichal P (1987) Anti-Candida drugs—the biochemical basis for their activity. Clin Microbiol Rev 15:57–72

    CAS  Google Scholar 

  • Vander Straten MR, Hossain MA, Ghannoum MA (2003) Cutaneous infections dermatophytosis, onychomycosis, and tinea versicolor. Infect Dis Clin North Am 17:87–112

    PubMed  Google Scholar 

  • Wang L, Ma L, Leng W, Liu T, Yu L, Yang J, Yang L, Zhang W, Zhang Q, Dong J, Xue Y, Zhu Y, Xu X, Wan Z, Ding G, Yu F, Tu K, Li Y, Li R, Shen Y, Jin Q (2006) Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics 7:255

    PubMed  PubMed Central  Google Scholar 

  • Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q (2007) Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51:144–153

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng J (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 49:905–915

    CAS  PubMed  Google Scholar 

  • Zhang W, Yu L, Leng W, Wang X, Wang L, Deng X, Yang J, Liu T, Peng J, Wang J, Li S, Jin Q (2007) cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet Biol 4:1252–1261

    Google Scholar 

Download references

Acknowledgments

We are grateful to Ruoyu Li (Research Center for Medical Mycology, Peking University) for providing strain T. rubrum BMU 01672 and for helpful discussions. Financial supports for this work came from the National High Technology Research and Development Program of China (accession number 2006AA020504) and National Key Technologies R&D Programme (accession number 2002BA711A14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 95.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Yu, L., Yang, J. et al. Transcriptional profiles of response to terbinafine in Trichophyton rubrum . Appl Microbiol Biotechnol 82, 1123–1130 (2009). https://doi.org/10.1007/s00253-009-1908-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1908-9

Keywords

Navigation