Skip to main content
Log in

d-Galacturonic acid catabolism in microorganisms and its biotechnological relevance

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

d-Galacturonic acid is the main constituent of pectin, a naturally abundant compound. Pectin-rich residues accumulate when sugar is extracted from sugar beet or juices are produced from citrus fruits. It is a cheap raw material but currently mainly used as animal feed. Pectin has the potential to be an important raw material for biotechnological conversions to fuels or chemicals. In this paper, we review the microbial pathways for the catabolism of d-galacturonic acid that would be relevant for the microbial conversion to useful products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    CAS  PubMed  Google Scholar 

  • Ashwell G, Wahba AJ, Hickman J (1960) Uronic acid metabolism in bacteria. I. Purification and properties of uronic acid isomerase in Escherichia coli. J Biol Chem 235:1559–1565

    CAS  PubMed  Google Scholar 

  • Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343:563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YF, Feingold DS (1969) Hexuronic acid dehydrogenase of Agrobacterium tumefaciens. J Bacteriol 99:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YF, Feingold DS (1970) d-Glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J Bacteriol 102:85–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Condemine G, Robert-Baudouy J (1987) 2-Keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J Bacteriol 169:1972–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Condemine G, Robert-Baudouy J (1991) Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol 5:2191–2202

    CAS  PubMed  Google Scholar 

  • Crowther RL, Georgiadis MM (2005) The crystal structure of 5-keto-4-deoxyuronate isomerase from Escherichia coli. Proteins 61:680–684

    CAS  PubMed  Google Scholar 

  • Cynkin MA, Ashwell G (1960) Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-d-gluconokinase in Escherichia coli. J Biol Chem 235:1576–1579

    CAS  PubMed  Google Scholar 

  • de Vries RP, Jansen J, Aguilar G, Parenicova L, Joosten V, Wulfert F, Benen JA, Visser J (2002) Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 530:41–47

    PubMed  Google Scholar 

  • Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 84–86:141–152

    PubMed  Google Scholar 

  • Doran-Peterson J, Cook DM, Brandon SK (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592

    CAS  PubMed  Google Scholar 

  • Ehrlich F (1932a) Über die Pektolase, ein neuaufgefundenes Pektinferment. II. Biochem Z 251:204–222

    CAS  Google Scholar 

  • Ehrlich F (1932b) Über die Pektolase, ein neuaugefundenes Pektinferment. I. Biochem Z 250:525–534

    CAS  Google Scholar 

  • Grohmann K, Manthey JA, Cameron RG, Busling BS (1998) Fermentation of galacturonic acid and pectin rich materials to ethanol by genetically modified strains of Erwinia. Biotechnol Lett 20:195–200

    CAS  Google Scholar 

  • Hickman J, Ashwell G (1960) Uronic acid metabolism in bacteria. II. Purification and properties of d-altronic acid and d-mannonic acid dehydrogenases in Escherichia coli. J Biol Chem 235:1566–1570

    CAS  PubMed  Google Scholar 

  • Hilditch S, Berghäll S, Kalkkinen N, Penttilä M, Richard P (2007) The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 282:26195–26201

    CAS  PubMed  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    CAS  PubMed  Google Scholar 

  • Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA (1998) Evolution of enzymatic activities in the enolase superfamily: characterization of the (d)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37:14369–14375

    CAS  PubMed  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayani RS, Shivalika S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    CAS  Google Scholar 

  • Jeffcoat R (1975) Studies on the subunit structure of 4-deoxy-5-oxoglucarate hydro-lyase (decarboxylating) from Pseudomonas acidovorans. Biochem J 145:305–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227

    CAS  PubMed  Google Scholar 

  • Kessler G, Neufeld EF, Feingold DS, Hassid WZ (1961) Metabolism of d-glucuronic acid and d-galacturonic acid by Phaseolus aureus seedlings. J Biol Chem 236:308–312

    CAS  PubMed  Google Scholar 

  • Kilgore WW, Starr MP (1959) Uronate oxidation by phytopathogenic pseudomonads. Nature 183:1412–1413

    CAS  PubMed  Google Scholar 

  • Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry 44:11234–11240

    CAS  PubMed  Google Scholar 

  • Kuorelahti S, Jouhten P, Maaheimo H, Penttilä M, Richard P (2006a) l-Galactonate dehydratase is part of the fungal path for d-galacturonic acid catabolism. Mol Microbiol 61:1060–1068

    CAS  PubMed  Google Scholar 

  • Kuorelahti S, Penttilä M, Richard P (2006b) Microbial conversion of sugar acids and means useful therein. PCT application WO 2006/128965 A1

  • Liepins J, Kuorelahti S, Penttilä M, Richard P (2006) Enzymes for the NADPH-dependent reduction of dihydroxyacetone and d-glyceraldehyde and l-glyceraldehyde in the mould Hypocrea jecorina. FEBS J 273:4229–4235

    CAS  PubMed  Google Scholar 

  • Link KP, Nedden R (1931) Improvements in the preparation of d-galacturonic acid. J Biol Chem 94:307–314

    CAS  Google Scholar 

  • Martens-Uzonova E (2008) Assessment of the pectinolytic network of Aspergillus niger by functional genomics. Insight from the transcriptome. PhD thesis, University of Wageningen, Wageningen

  • Mata-Gilsinger M, Ritzenthaler P (1983) Physical mapping of the exuT and uxaC operators by use of exu plasmids and generation of deletion mutants in vitro. J Bacteriol 155:973–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meloche HP, Wood WA (1964) Crystallization and characteristics of 2-keto-3-deoxy-6-phosphogluconic aldolase. J Biol Chem 239:3515–3518

    CAS  PubMed  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez S, Mazeau K, Hervé du Penhoat C (2000) The three-dimensional structures of the pectic polysaccharides. Plant Physiol Biochem 38:37–55

    Google Scholar 

  • Perez S, Rodriguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85:109–121

    CAS  PubMed  Google Scholar 

  • Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr 47:1–19

    CAS  PubMed  Google Scholar 

  • Preiss J, Ashwell G (1963a) Polygalacturonic acid metabolism in bacteria. I. Enzymatic formation of 4-deoxy-l-threo-5-hexoseulose uronic acid. J Biol Chem 238:1571–1577

    CAS  PubMed  Google Scholar 

  • Preiss J, Ashwell G (1963b) Polygalacturonic acid metabolism in bacteria. II. Formation and metabolism of 3-deoxy-d-glycero-2, 5-hexodiulosonic acid. J Biol Chem 238:1577–1583

    CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    CAS  PubMed  Google Scholar 

  • Riov J (1975) Metabolism of uronic acids in plant tissues: partial purification and properties of uronic acid oxidase from citrus leaves. Plant Physiol 55:602–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito D, Nakaji S, Fukuda S, Shimoyama T, Sakamoto J, Sugawara K (2005) Comparison of the amount of pectin in the human terminal ileum with the amount of orally administered pectin. Nutrition. 21:914–919

    CAS  PubMed  Google Scholar 

  • Sealy-Lewis HM, Fairhurst V (1992) An NADP+-dependent glycerol dehydrogenase in Aspergillus nidulans is inducible by d-galacturonate. Curr Genet 22:293–296

    CAS  PubMed  Google Scholar 

  • Smiley JD, Ashwell G (1960) Uronic acid metabolism in bacteria. III. Purification and properties of d-altronic acid and d-mannonic acid dehydrases in Escherichia coli. J Biol Chem 235:1571–1575

    CAS  PubMed  Google Scholar 

  • Wagner G, Hollmann S (1976) Uronic acid dehydrogenase from Pseudomonas syringae. Purification and properties. Eur J Biochem 61:589–596

    CAS  PubMed  Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418

    CAS  PubMed  Google Scholar 

  • Wolterink-van Loo S, van Eerde A, Siemerink MA, Akerboom J, Dijkstra BW, van der Oost J (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Würdig G (1977) Apparition de l’acide mucique dans le mout provenant de raisins attaques par le Botrytis. Bull. OIV 50:50–56

    Google Scholar 

  • Zajic JE (1959) Hexuronic dehydrogenase of Agrobacterium tumefaciens. J Bacteriol 78:734–735

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an Academy Research Fellowship from the Academy of Finland for P. Richard. We thank Dr Marylin Wiebe and Dr. John Londesborough for critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, P., Hilditch, S. d-Galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 82, 597–604 (2009). https://doi.org/10.1007/s00253-009-1870-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1870-6

Keywords

Navigation