Skip to main content
Log in

The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Cysteine is an important amino acid in terms of its industrial applications. We previously found marked production of l-cysteine directly from glucose in recombinant Escherichia coli cells by the combination of enhancing biosynthetic activity and weakening the degradation pathway. Further improvements in l-cysteine production are expected to use the amino acid efflux system. Here, we identified a novel gene involved in l-cysteine export using a systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection). Among the 3,985 nonessential gene mutants, tolC-disrupted cells showed hypersensitivity to l-cysteine relative to wild-type cells. Gene expression analysis revealed that the tolC gene encoding the outer membrane channel is essential for l-cysteine tolerance in E. coli cells. However, l-cysteine tolerance is not mediated by TolC-dependent drug efflux systems such as AcrA and AcrB. It also appears that other outer membrane porins including OmpA and OmpF do not participate in TolC-dependent l-cysteine tolerance. When a low-copy-number plasmid carrying the tolC gene was introduced into E. coli cells with enhanced biosynthesis, weakened degradation, and improved export of l-cysteine, the transformants exhibited more l-cysteine tolerance and production than cells carrying the vector only. We concluded that TolC plays an important role in l-cysteine tolerance probably due to its export ability and that TolC overexpression is effective for l-cysteine production in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243

    CAS  PubMed  Google Scholar 

  • Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of cysteine desulfhydrases in Escherichia coli. Appl Environ Microbiol 71:4149–4152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) The construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Methods Mol Biol 416:171–181

    Article  Google Scholar 

  • Berger EA, Konings LA (1972) A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694

    CAS  PubMed  Google Scholar 

  • Click EM, McDonald GA, Schnaitman CA (1988) Translational control of exported proteins that results from OmpC porin overexpression. J Bacteriol 170:2500–2011

    Article  Google Scholar 

  • Daßler T, Maier T, Winterhalter C, Böck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112

    Article  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta P (1967) Regulation of homoserine biosynthesis by l-cysteine, a terminal metabolite of a linked pathway. Proc Natl Acad Sci 58:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney JM, Ang D, Georgopoulos C (1992) Isolation and characterization of the Escherichia coli htrD gene, whose product is required for growth at high temperatures. J Bacteriol 174:1240–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkins CA, Beenken KE (2005) Modeling the tripartite drug efflux pump achetype: structural and functional studies of the macromolecular constituents reveal more than their names imply. J Chemother 17:581–592

    Article  CAS  PubMed  Google Scholar 

  • Fralick JA (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178:5803–5805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke I, Resch A, Daßler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes DE, Fuentes EL, Castro ME, Pérez JM, Araya MA, Chasteen TG, Pichuantes SE, Vásquez CC (2007) Cysteine metabolism-related genes and bacterial resistance to potassium tellurite. J Bacteriol 189:8953–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CL (1981) Cysteine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CL, Lui L (1981) Cysteine and growth inhibition of Escherichia coli: depression of the ilvGEDA operon. Biochem Biophys Res Commun 101:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Kari C, Nagy Z, Kovacs P, Hernadi F (1971) Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68:349–356

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (A complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    Article  CAS  PubMed  Google Scholar 

  • Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489

    Article  CAS  PubMed  Google Scholar 

  • Kredich NM (1983) Regulation of cysteine biosynthesis in Escherichia coli and Salmonella typhimurium. In: Herrmann KM, Sommerville (eds) Amino acids: biosynthesis and genetic regulation. Addison-Wesley, United Kingdom, pp 115–132

  • Kredich NM, Tomkins GM (1966) The enzymic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy G, Tikhonova EB, Zgurskaya HI (2008) Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 190:691–698

    Article  CAS  PubMed  Google Scholar 

  • Lau SY, Zgurskaya HI (2005) Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 187:7815–7825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomovskaya O, Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 89:8938–8942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamori S, Kobayashi S, Kobayashi C, Takagi H (1998) Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman MS, Corker H, Wu G, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    Article  CAS  PubMed  Google Scholar 

  • Pittman MS, Robinson HC, Poole RK (2005) A Bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen MA, Pedersen S (1991) Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Awano N, Kobayashi S, Kobayashi C, Noji M, Saito K, Nakamori S (1999a) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol Lett 179:453–459

    CAS  PubMed  Google Scholar 

  • Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999b) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of l-cysteine and l-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327

    Article  CAS  PubMed  Google Scholar 

  • White DG, Goldman JD, Demple B, Levy SB (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterhalter C, Leinfelder W (1997) Microorganisms and process for the fermentative production of l-cysteine, l-cystine, N-acetyl-serine or thiazolidin-derivates. Consortium für elektrochemische Industrie GmbH, assignee. European patent 0885962A1

  • Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H (2006) Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 72:4735–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We greatly appreciate R. Takeuchi, N. Yoshida, and S. Morigasaki (Nara Institute of Science and Technology, Japan) for their helpful assistance and discussion on this work, respectively. We thank N. Tsukagoshi (Tokyo Institute of Technology, Yokohama, Japan), A. Yamaguchi (Osaka University, Osaka, Japan), and Ajinomoto, Co., Inc. (Tokyo, Japan) for providing the strains and plasmids. This work was supported in part by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas “Applied Genomics” from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a grant from Ajinomoto Co., Inc. to H.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takagi.

Additional information

Natthawut Wiriyathanawudhiwong and Iwao Ohtsu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiriyathanawudhiwong, N., Ohtsu, I., Li, ZD. et al. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli . Appl Microbiol Biotechnol 81, 903–913 (2009). https://doi.org/10.1007/s00253-008-1686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1686-9

Keywords

Navigation