Skip to main content
Log in

Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

When a colloidal solution consisting of nanosized acicular material and bacterial cells is stimulated with sliding friction at the interface between the hydrogel and interface-forming material where the frictional coefficient increases rapidly, the nanosized acicular material accompanying the bacterial cells forms a penetration intermediate. This effect is known as the Yoshida effect in honor of its discoverer. Through the Yoshida effect, a novel property in which penetration intermediates incorporate exogenous plasmid DNA has been identified. This report proposes a possible mechanism for exogenous plasmid acquisition by penetration intermediates in the Yoshida effect. Escherichia coli cells, pUC18, and chrysotile were used as recipient cells, plasmid DNA, and nanosized acicular material, respectively. Even when repeatedly washing the mixture consisting of pUC18 and chrysotile, transformation efficiency by pUC18 was stable. Accordingly, pUC18 adsorbed onto chrysotile was introduced into recipient E. coli cells. At saturation, the amount of pUC18 adsorbed onto chrysotile was 0.8–1.2 µg/mg. To investigate whether pUC18 adsorbed on chrysotile is replicated by polymerase, polymerase chain reaction (PCR) was carried out with the chrysotile. Amplification of the β-lactamase gene coded in pUC18, which was adsorbed onto chrysotile, was strongly inhibited. This suggests that DNA adsorbed onto chrysotile is not replicated in vivo. When we searched for substances to release pUC18 adsorbed onto chrysotile, we found that a 300-bp single- or double-stranded segment of DNA releases pUC18 from chrysotile. Competitive adsorption onto chrysotile between double-stranded DNA and pUC18 was then examined through the Yoshida effect. The 310- and 603-bp double-stranded nucleotides caused 50% competitive inhibition at the same molar ratio with pUC18. Hence, the adsorbed region of pUC18 is about 300 bp in length. As the culture period for recipient cells increases, transformation efficiency decreases while the expression levels of small RNA of 300–600 bp also decrease. These results suggest that pUC18 adsorbed onto chrysotile can be released by 300-bp small RNA, replicated by DNA polymerase, and transferred to daughter cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Lail NI, Camesano TA (2003) Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ Sci Technol. 37:2173–2183

    CAS  PubMed  Google Scholar 

  • Balan E, Mauri F, Lemaire C, Brouder C, Guyot F, Saitta AM, Devouard B (2002) Multiple ionic-plasmon resonances in naturally occurring multiwall nanotubes: infrared spectra of chrysotile asbestos. Phys Rev Lett 89:177401

    PubMed  Google Scholar 

  • Cai P, Huang QY, Lu YD, Chen WL, Jiang DH, Liang W (2007) Amplification of plasmid DNA bound on soil colloidal particles and clay minerals by the polymerase chain reaction. J Environ Sci (China) 19:1326–1329

    CAS  Google Scholar 

  • Cohen G, Zimmer Z (1974) Transfection of Escherichia coli by bacteriophage P1 DNA. Mol Gen Genet 128:183–186

    CAS  PubMed  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deguchi A, Thompson WJ, Weinstein IB (2004) Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer Res 64:3966–3973

    CAS  PubMed  Google Scholar 

  • Dong L, Johnson DT (2005) Adsorption of acicular particles at liquid-fluid interfaces and the influence of the line tension. Langmuir 21:3838–3849

    CAS  PubMed  Google Scholar 

  • Draper GC, Gober JW (2002) Bacterial chromosome segregation. Annu Rev Microbiol 56:567–597

    CAS  PubMed  Google Scholar 

  • Falini G, Foresti E, Gazzano M, Gualtieri AF, Leoni M, Lesci IG, Roveri N (2004) Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry 10:3043–3049

    CAS  PubMed  Google Scholar 

  • Franchi M, Gallori E (2005) A surface-mediated origin of the RNA world: biogenic activities of clay-adsorbed RNA molecules. Gene 346:205–214

    CAS  PubMed  Google Scholar 

  • Grabherr R, Bayer K (2002) Impact of targeted vector design on Co/E1 plasmid replication. Trends Biotechnol 20:257–260

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hansma HG, Bezanilla M, Zenhausern F, Adrian M, Sinsheimer RL (1993) Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res 21:505–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazan R, Ben-Yehuda S (2006) Resolving chromosome segregation in bacteria. J Mol Microbiol Biotechnol 11:126–139

    PubMed  Google Scholar 

  • Hershberg R, Altuvia S, Margalit H (2003) A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res 31:1813–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh H, Pourjavavdi A, Zohuriaan-Mehr MJ (2004) Modified carrageenan. 2. Hydrolyzed crosslinked kappa-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J Biomater Sci Polym Ed 15:1499–1511

    CAS  PubMed  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    CAS  PubMed  Google Scholar 

  • Kang SC, Jo YJ, Bak JP, Kim KC, Kim YS (2007) Evaluation for protein binding affinity of maghemite and magnetite nanoparticles. J Nanosci Nanotechnol 7:3706–3708

    CAS  PubMed  Google Scholar 

  • Kara M, Yuzer H, Sabah E, Celik MS (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232

    CAS  PubMed  Google Scholar 

  • Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 125:9014–9015

    CAS  PubMed  Google Scholar 

  • Kramer MG, Khan SA, Espinosa M (1997) Plasmid rolling circle replication: identification of the RNA polymerase-directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis. EMBO J 16:5784–5795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa T, Tominaga T, Katsuyama Y, Kuwabara R, Furukawa H, Osada Y, Gong JP (2005) Elastic-hydrodynamic transition of gel friction. Langmuir 21:8643–8648

    CAS  PubMed  Google Scholar 

  • Listner K, Bentley LK, Chartrain M (2006) A simple method for the production of plasmid DNA in bioreactors. Methods Mol Med 127:295–309

    CAS  PubMed  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    CAS  PubMed  Google Scholar 

  • Mesrati LA, Karray MD, Tounsi S, Jaoua S (2005) Construction of a new high-copy number shuttle vector of Bacillus thuringiensis. Lett Appl Microbiol 41:361–366

    CAS  PubMed  Google Scholar 

  • Mossman BT, Bignon J, Corn M, Seaton A, Gee JB (1990) Asbestos: scientific developments and implications for public policy. Science 247:294–301

    CAS  PubMed  Google Scholar 

  • Oscar TP, Dulal K, Boucaud D (2006) Transformation of Escherichia coli K-12 with a high-copy plasmid encoding the green fluorescent protein reduces growth: implications for predictive microbiology. J Food Prot 69:276–281

    CAS  PubMed  Google Scholar 

  • Parke D (1990) Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene 93:135–137

    CAS  PubMed  Google Scholar 

  • Pele JP, Calvert RA (1983) comparative study on the hemolytic action of short asbestos fibers on human, rat, and sheep erythrocytes. Environ Res 31:164–175

    CAS  PubMed  Google Scholar 

  • Rojas-Chapana J, Troszczynska J, Firkowska I, Morsczeck C, Giersig M (2005) Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab Chip 5:536–539

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanchez-Sevilla A, Thimonier J, Marilley M, Rocca-Serra J, Barbet J (2002) Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy 92:151–158

    CAS  PubMed  Google Scholar 

  • Smith AM, Shelton RM, Perrie Y, Harris JJ (2007) An initial evaluation of gellan gum as a material for tissue engineering applications. J Biomater Appl. 22:241–254

    CAS  PubMed  Google Scholar 

  • Stammen JA, Williams S, Ku DN, Guldberg RE (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22:799–806

    CAS  PubMed  Google Scholar 

  • Stephens C (2002) Chromosome segregation: pushing plasmids apart. Curr Biol 12:R728–730

    CAS  PubMed  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    CAS  PubMed  Google Scholar 

  • Tacon W, Sherratt D (1976) ColE plasmid replication in DNA polymerase I-deficient strains of Escherichia coli. Mol Gen Genet 147:331–135

    CAS  PubMed  Google Scholar 

  • Towner RA, Mason RP, Reinke LA (2002) In vivo detection of aflatoxin-induced lipid free radicals in rat bile. Biochim Biophys Acta 1573:55–62

    CAS  PubMed  Google Scholar 

  • Wassarman KM (2002) Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109:141–144

    CAS  PubMed  Google Scholar 

  • Yoshida N (2007) Discovery and application of the Yoshida effect: nanosized acicular materials enable penetration of bacterial cells by sliding friction force. Recent Pat Biotechnol 1:194–201

    CAS  PubMed  Google Scholar 

  • Yoshida N, Saeki Y (2004a) Chestnut bur-shaped aggregates of chrysotile particles enable inoculation of Escherichia coli cells with plasmid DNA. Appl Microbiol Biotechnol, 65:566–575

    CAS  Google Scholar 

  • Yoshida N, Saeki Y (2004b) Chrysotile fibers penetrate Escherichia coli cell membrane and cause cell bursting by sliding friction force on agar plates. J Biosci Bioeng 97:162–168

    CAS  PubMed  Google Scholar 

  • Yoshida N, Ikeda T, Yoshida T, Sengoku T, Ogawa K (2001) Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol Lett 195:133–137

    CAS  PubMed  Google Scholar 

  • Yoshida N, Nakajima-Kambe T, Matsuki K, Shigeno T (2007) Novel plasmid transformation method mediated by chrysotile, sliding friction, and elastic body exposure. Anal Chem Insights 2:9–15

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Z, Ling L, Shi B, Chen R (2004) Conservation analysis of small RNA genes in Escherichia coli. Bioinformatics 20:599–603

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, N., Ide, K. Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect. Appl Microbiol Biotechnol 80, 813–821 (2008). https://doi.org/10.1007/s00253-008-1637-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1637-5

Keywords

Navigation