Skip to main content
Log in

Significance of fatty acid supplementation on profiles of cell growth, fatty acid, and gene expression of three desaturases in Mucor rouxii

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular and biochemical studies investigating the biosynthesis of gamma-linolenic acid (GLA), a nutritionally important polyunsaturated fatty acid, were implemented in Mucor rouxii by supplementation with exogenous fatty acids. Compared to the fatty acid-free cultures, addition of C18:2Δ9,12 to the cultures showed up to threefold decrease in the GLA content from the beginning of the culture, whereas a significantly increased GLA amount (P ≤ 0.05) was found after 9 h of growth in the logarithmic cultures fed with stearic acid or oleic acid. Time-course studies of gene expression showed concomitant changes in the messenger RNA (mRNA) levels of the M. rouxii Δ6-, Δ9-, and Δ12-desaturases upon exposure to fatty acids, and these responses were rapid and transient. However, the expression profiles were different depending on the type of exogenous fatty acids supplementing the cultures. Up-regulation of the three desaturase transcripts was detected after addition of C18:0, whereas supplementation of unsaturated fatty acids led to a decrease in mRNA levels. This study showed that the three desaturase genes involved in fatty acid desaturation in M. rouxii are co-regulated in response to exogenous fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bossie MA, Martin CE (1989) Nutritional regulation of yeast Δ-9 fatty acid desaturase activity. J Bacteriol 171:6409–6413

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  Google Scholar 

  • Certik M, Balteszova L, Sajbidor J (1997) Lipid formation and γ-linolenic acid production by Mucorales fungi grown on sunflower oil. Lett Appl Microbiol 25:101–105

    Article  CAS  Google Scholar 

  • Certik M, Sakuradani E, Shimizu S (1998) Desaturase-defective fungal mutants: useful tools for the regulation and overproduction of polyunsaturated fatty acids. Trends Biotechnol 16:500–505

    Article  CAS  Google Scholar 

  • Cheng MH, Walker TH, Hulbert GJ, Raman DR (1999) Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil. Biores Technol 67:101–110

    Article  CAS  Google Scholar 

  • Choi JY, Stukey J, Hwang SY, Martin CE (1996) Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271:3581–3589

    Article  CAS  Google Scholar 

  • Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 64:893–901

    Article  CAS  Google Scholar 

  • Dyal SD, Bouzidi L, Narine SS (2005) Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Res Int 38:815–829

    Article  CAS  Google Scholar 

  • Fleith M, Clandinin MT (2005) Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci Nutr 45:205–229

    Article  CAS  Google Scholar 

  • Garg ML, Sebokova E, Thomson AB, Clandinin MT (1988) Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids. Biochem J 249:351–356

    Article  CAS  Google Scholar 

  • Gonzalez CI, Martin CE (1996) Fatty acid-responsive control of mRNA stability. Unsaturated fatty acid-induced degradation of the Saccharomyces OLE1 transcript. J Biol Chem 271:25802–25809

    Article  Google Scholar 

  • Higashiyama K, Fujikawa S, Park EY, Shimizu S (2002) Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng 7:252–262

    Article  CAS  Google Scholar 

  • James RR, Buckner JS (2004) Lipids stimulate spore germination in the entomopathogenic ascomycete Ascosphaera aggregate. Mycopathologia 158:293–302

    Article  CAS  Google Scholar 

  • Jang H-D, Lin Y-Y, Yang S-S (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Biores Technol 96:1633–1644

    Article  CAS  Google Scholar 

  • Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2006) Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiol Lett 259:60–66

    Article  CAS  Google Scholar 

  • Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2008) Evaluation of inoculum performance for enhancing gamma-linolenic acid production from Mucor rouxii. Lett Appl Microbiol 46:421–427

    Article  CAS  Google Scholar 

  • Jump DB, Clarke SD, Thelen A, Liimatta M (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res 35:1076–1084

    CAS  PubMed  Google Scholar 

  • Kendrick A, Ratledge C (1996) Cessation of polyunsaturated fatty acid formation in four selected filamentous fungi when grown on plant oils. J Am Oil Chem Soc 73:431–435

    Article  CAS  Google Scholar 

  • Khunyoshyeng S, Cheevadhanarak S, Rachdawong S, Tanticharoen M (2002) Differential expression of desaturases and changes in fatty acid composition during sporangiospore germination. Fungal Genet Biol 37:13–21

    Article  CAS  Google Scholar 

  • Laoteng K, Anjard C, Rachadawong S, Tanticharoen M, Maresca B, Cheevadhanarak S (1999) Mucor rouxii Δ9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Mol Cell Biol Res Commun 1:36–43

    Article  CAS  Google Scholar 

  • Laoteng K, Jitsue S, Dandusitapunth Y, Cheevadhanarak S (2008) Ethanol-induced changes in expression profiles of cell growth, fatty acid and desaturase genes of Mucor rouxii. Fungal Genet Biol 45:61–67

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  Google Scholar 

  • Lounds C, Eagles J, Carter AT, MacKenzie DA, Archer DB (2007) Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol 188:299–305

    Article  CAS  Google Scholar 

  • McDonough VM, Stukey JE, Martin CE (1992) Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 267:5931–5936

    CAS  PubMed  Google Scholar 

  • Na-Ranong S, Laoteng K, Kittakoop P, Tanticharoen M, Cheevadhanarak S (2005) Substrate specificity and preference of Δ6-desaturase of Mucor rouxii. FEBS Lett 579:2744–2748

    Article  CAS  Google Scholar 

  • Niot I, Poirier H, Besnard P (1997) Regulation of gene expression by fatty acids: special reference to fatty acid-binding protein (FABP). Biochimie 79:129–133

    Article  CAS  Google Scholar 

  • Pham H, Vang K, Ziboh VA (2006) Dietary γ-linolenate attenuates tumor growth in a rodent model of prostatic adenocarcinoma via suppression of elevated generation of PGE2 and 5S-HETE. Prostaglandins Leukot Essent Fat Acids 74:271–282

    Article  CAS  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1050

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  • Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H (1989) Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina 1S-4 at low temperature. Appl Microbiol Biotechnol 32:1–4

    Article  CAS  Google Scholar 

  • Smith JJ, Ramsey SA, Marelli M, Marzolf B, Hwang D, Saleem RA, Rachubinski RA, Aitchison JD (2007) Transcriptional responses to fatty acid are coordinated by combinatorial control. Mol Syst Biol 3:115

    Article  Google Scholar 

  • Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR (2003) Effect of culture condition on lipid and gamma-linolenic acid production by mucoraceous fungi. Proc Biochem 38:1719–1724

    Article  CAS  Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora (medium N). Microb Genet Bull 13:42–43

    Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Proc Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Wolfrum C, Spener F (2000) Fatty acids as regulators of lipid metabolism. Eur J Lipid Sci Technol 102:746–762

    Article  CAS  Google Scholar 

  • Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology 146:2325–2331

    Article  CAS  Google Scholar 

  • Wynn JP, bin Abdul Hamid A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  CAS  Google Scholar 

  • Zhou MY, Xue D, Gomez-Sanchez EP, Gomez-Sanchez CE (1994) Improved downward capillary transfer for blotting of DNA and RNA. Biotechniques 16:58–59

    CAS  Google Scholar 

  • Zurier RB, Rossetti RG, Jacobson EW, DeMarco DM, Liu NY, Temming JE, White BM, Laposata M (1996) Gamma-linolenic acid treatment of rheumatoid arthritis. A randomized, placebo-controlled trial. Arthritis Rheum 39:1808–1817

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research work was supported by grants from King Mongkut’s University of Technology Thonburi and the National Center for Genetic Engineering and Biotechnology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobkul Laoteng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoomrung, S., Laoteng, K., Jitsue, S. et al. Significance of fatty acid supplementation on profiles of cell growth, fatty acid, and gene expression of three desaturases in Mucor rouxii . Appl Microbiol Biotechnol 80, 499–506 (2008). https://doi.org/10.1007/s00253-008-1569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1569-0

Keywords

Navigation