Skip to main content
Log in

Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Slime formation is a serious problem nowadays in the paper industry. Some enterobacteria are associated with the formation of slime deposits in paper and board mills. Detection and characterization of slime forming bacteria, belonging to the genus Enterobacter, Raoultella, and Klebsiella have been achieved by fluorescence in situ hybridization (FISH), using one probe based on the enterobacterial repetitive intergenic consensus sequence and other two rRNA targeted oligonucleotide probes. The effects of three kinds of antimicrobiological products (biocides, dispersants, and enzymes) on these enterobacterial cells were analyzed by flow cytometry (FC). Biocides Butrol 1009 and 1072 were the most effective microbiocides against all enterobacterial cells analyzed, reaching 90% of dead bacteria after 24 h. However, the enzymatic treatment (Buzyme) was not equally efficient on enterobacteria and its microbiocide capacity varied depending on the type of microorganism. FISH and FC were effective tools to detect important slime forming enterobacteria and to select specific treatments to control microbial problems in the paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236

    Article  CAS  PubMed  Google Scholar 

  • Armisen TG, Servais P (2004) Combining direct viable count (DVC) and fluorescent in situ hybridisation (FISH) to enumerate viable E. coli in rivers and wastewaters. Water Sci Technol 50:271–275

    Article  CAS  PubMed  Google Scholar 

  • Bachelier S, Clément JM, Hofnung M (1999) Short palindromic repetitive DNA elements in enterobacteria: a survey. Res Microbiol 150:627–639

    Article  Google Scholar 

  • Bathe S, Hausner M (2006) Design and evaluation of 16S rRNA sequence based oligonucleotide probes for the detection and quantification of Comamonas testosteroni in mixed microbial communities. BMC Microbiol 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Beauchamp CJ, Simao-Beaunoir AM, Beaulieu C, Chalifour FP (2006) Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges. Water Res 40:2452–2462

    Article  CAS  PubMed  Google Scholar 

  • Blanco A (2003) Microbiology in papermaking. Recent Res Dev Appl Microbiol Biotechnol 1:87–134

    CAS  Google Scholar 

  • Blanco A, Negro C, Gaspar I, Tijero J (1996) Slime problems in the paper and board industry. Appl Microbiol Biotechnol 46:203–208

    Article  CAS  Google Scholar 

  • Collado MC, Sanz Y (2007) Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet Microbiol 121:299–306

    Article  CAS  PubMed  Google Scholar 

  • Dauga C (2002) Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52:531–547

    Article  CAS  PubMed  Google Scholar 

  • Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2:191–201

    Article  CAS  PubMed  Google Scholar 

  • Garbi C, Casasus L, Martinez-Alvarez R, Robla JI, Martín M (2006) Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: implementation in an herbicide removal reactor and modelling. Water Res 40:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagström A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier F, Archibald F (2001) The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Water Res 35:2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Gauthier F, Neufeld JD, Driscoll BT, Archibald F (2000) Coliform bacteria and nitrogen fixation in pulp and paper mill effluent treatment systems. Appl Environ Microbiol 66:5155–5160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulton CSJ, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium, and other enterobacteria. Mol Microbiol 5:825–834

    Article  CAS  PubMed  Google Scholar 

  • Kempf VAJ, Trebesius K, Autenrieth IB (2000) Fluorescent in situ Hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Y, Westram R, Behrens S, Fuchs B, Glöckner FO, Amann R, Meier H, Ludwig W (2005) Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics 6:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahtinen T, Kosone M, Tiirola M, Vuento M, Oker-Blom C (2006) Diversity bacteria contaminating paper machines. J Ind Microbiol Biotechnol 33:734–740

    Article  CAS  PubMed  Google Scholar 

  • Neilson AH, Sparell L (1976) Acetylene reduction (nitrogen fixation) by Enterobacteriaceae isolated from paper mill process waters. Appl Environ Microbiol 32:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdersen K (1982) Method for studying microbial biofilms in flowing-water systems. Appl Environ Microbiol 43:6–13

    Article  Google Scholar 

  • Peters RPH, Savelkoul PHM, Simoons-Smit AM, Danner SA, Vandenbroucke-Grauls CMJE, van Agtmeael MA (2006) Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J Clin Microbiol 44:119–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rättö M, Verhoef R, Suihko M-L, Blanco A, Schols HA, Voragen AGJ, Wilting R, Siika-aho M, Buchert J (2006) Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J Ind Microbiol Biotechnol 33:359–367

    Article  PubMed  Google Scholar 

  • Sanborn JR (1944) Slime-producing coliform and coliform-like bacteria. J Bacteriol 48:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spröer C, Mendrock U, Swiderski J, Lang E, Stackebrandt E (1999) The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. Int J Syst Bacteriol 4:1433–1438

    Article  Google Scholar 

  • Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse HJ, Salkinoja-Salonen M (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084

    Article  PubMed  Google Scholar 

  • Wilson LA, Sharp PM (2006) Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol Biol Evol 23:1156–1168

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz L, Ökten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72:733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of the EU to the projects Slimezymes (GRDI-2000-25676) and Odour Control (016730-FP6-2003-SME-1) and of the Community of Madrid to the project PROLIPAPEL (S-0505/AMB0100). We also thank Yadhu Kumar (Universität München, Germany) for his help in the probe analysis with the ARB software and Buckman Laboratories for their products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, C.E., Gibello, A., Nande, M. et al. Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills. Appl Microbiol Biotechnol 78, 889–897 (2008). https://doi.org/10.1007/s00253-008-1369-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1369-6

Keyword

Navigation